University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Autotuning the Intel HLS Compiler using the Opentuner Framework

      Thumbnail
      View/Open
      JANZEN-THESIS-2019.pdf (1.820Mb)
      Date
      2019-10-28
      Author
      Janzen, Chandler
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      High level synthesis (HLS) tools can be used to improve design flow and decrease verification times for field programmable gate array (FPGA) and application specific integrated circuit (ASIC) design. The Intel HLS Compiler is a high level synthesis tool that takes in untimed C/C++ as input and generates production-quality register transfer level (RTL) code that is optimized for Intel FPGAs. The translation does, however, require multiple iterations and manual optimizations to get comparable synthesized results to that of a solution written in a hardware descriptive language. The synthesis results can vary greatly based upon coding style and optimization techniques, and typically require an in-depth knowledge of FPGAs to fully optimize the translation which limits the audience of the tool. The extra abstraction that the C/C++ source code presents can also make it difficult to meet more specific design requirements; this includes designs to meet specific resource usage or performance based metrics. To improve the quality of results generated by the Intel HLS Compiler without a manual iterative process that requires an in-depth knowledge of FPGAs, this research proposes a method of automating some of the optimization techniques that improve the synthesized design through an autotuning process. The proposed approach utilizes the PyCParser library to parse C source files and the OpenTuner Framework to autotune the synthesis to provide a method that generates results that better meet the needs of the designer's requirements through lower FPGA resource usage or increased design performance. Such functionality is not currently available in Intel's commercial tools. The proposed approach was tested with the CHStone Benchmarking Suite of C programs as well as a standard digital signal processing finite impulse response filter. The results show that the commercial HLS tool can be automatically autotuned through placeholder injection using a source parsing tool for C code and using the OpenTuner Framework to autotune the results. For designs that are small in nature and include conducive structures to be autotuned, the results indicate resource usage reductions and/or performance increases of up to 40% as compared to the default Intel HLS Compiler results. The method developed in this research also allows additional design targets to be specified through the autotuner for consideration in the synthesized design which can yield results that are better matched to a design's requirements.
      Degree
      Master of Science (M.Sc.)
      Department
      Electrical and Computer Engineering
      Program
      Electrical Engineering
      Committee
      Teng, Daniel; Salt, Eric; Cao, Tate
      Copyright Date
      September 2019
      URI
      http://hdl.handle.net/10388/12422
      Subject
      HLS
      Intel FPGA
      FPGA
      OpenTuner
      autotuner
      C
      CHStone
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      The University of Saskatchewan's main campus is situated on Treaty 6 Territory and the Homeland of the Métis.

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy