University of SaskatchewanHARVEST
  • Login
  • Submit Your Research
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Novel insights into the infection mechanism of oomycete Pythium spp. in the host Arabidopsis thaliana

      Thumbnail
      View/Open
      HENDRIKS-THESIS-2020.pdf (6.386Mb)
      Date
      2020-09-14
      Author
      Hendriks, Anouk
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Phytopathogenic Pythium spp. cause seedling damping-off of a wide range of plant species worldwide and are traditionally considered necrotrophs. In this study, novel pathogenicity was discovered involving the oomycete Pythium cryptoirregulare and the model plant Arabidopsis thaliana. This pathogen was isolated from A. thaliana seedlings that were showing damping-off symptoms and was later identified as Pythium cryptoirregulare based on morphological and molecular characterization alongside reference species P. irregulare and P. ultimum var. ultimum. To examine its infection strategy, A. thaliana was inoculated with P. cryptoirregulare and studied using a microscopy approach. Viable colonized cells were observed based on neutral red uptake and the ability to undergo cell plasmolysis after infection. This biotrophic interaction contradicts the previously reported necrotrophic lifestyle of Pythium spp., which is characterized by killing the host cells prior to colonization. In addition, inhibition of root growth was detected prior to colonization by P. cryptoirregulare, suggesting that P. cryptoirregulare secreted growth inhibitors. Potentially, these inhibiting metabolites facilitate infection by delaying plant development and, thereby, extending the seedling stage that is targeted by this pathogen. Notably, P. cryptoirregulare culture filtrates disturbed transport and distribution of auxins, indicated by altered GFP expression in the A. thaliana lines PIN1-GFP, PIN2-GFP, PIN3-GFP, PIN7-GFP and DR5::GFP which visualize the auxin efflux. This disturbance was further confirmed by a reduced inhibitory effect on the auxin-insensitive A. thaliana mutants axr1-3, axr4-2, and aux1-7. Metabolic activity assay results suggested that P. cryptoirregulare secretes auxin-related metabolites that are involved in reprogramming plant growth. Overall, the characterization of P. cryptoirregulare as a novel pathogen on A. thaliana gives new insights into understanding the pathogenic mechanisms and interactions between oomycetes and plants.
      Degree
      Master of Science (M.Sc.)
      Department
      Biology
      Program
      Biology
      Supervisor
      Wei, Yangdou
      Committee
      Banniza, Sabine; Davis, Art; Punja, Zamir; Todd, Chris
      Copyright Date
      September 2020
      URI
      http://hdl.handle.net/10388/13016
      Subject
      Pythium (cryptoirregulare)
      infection strategy
      hemibiotrophy
      metabolic activity
      auxin homeostasis
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy