University of SaskatchewanHARVEST
  • Login
  • Submit Your Research
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Microbial Regulation of Soil Greenhouse Gas Emissions in a Non-Bloat Legume Grazing System

      Thumbnail
      View/Open
      REIMER-THESIS-2021.pdf (3.027Mb)
      Date
      2021-01-18
      Author
      Reimer, Jesse Christopher
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Cattle pastures are a source of greenhouse gas (GHG) emissions, including enteric methane from ruminating cattle, carbon dioxide (CO2), and nitrous oxide (N2O) from microbial respiration of soil carbon (C) and nitrogen (N). Producers may introduce non-bloat legumes to cattle pastures to improve soil N content, increase cattle protein uptake, and decrease enteric methane emissions. However, such land management changes can alter soil microbial communities, potentially increasing net system GHGs. The research goal was to determine whether non-bloat legumes alter soil microbial community structure, activity, and N2O emissions. Grazed pastures with introduced Veldt cicer milkvetch and common sainfoin were surveyed for differences in GHGs, microbial community structure, and extracellular enzyme activity for two growing seasons. Seasonal shifts explained most microbial community changes; however, communities structured according to legume treatment and legume microbial community structure correlated with increasing soil nitrate (NO3-) content, particularly in cicer milkvetch plots. Soil N2O fluxes did not differ on sampling dates, however cicer milkvetch tended towards larger N2O emissions. Pasture soil microbial community changes did not translate to increased N2O emissions on sampling dates. Additional protein found in non-bloat legumes may increase urine urea-N content in cattle affecting soil processes. Urine containing low or high concentrations of 15N and 13C labeled urea was added to soil microcosms under controlled conditions to better understand the impact of urine on soil N2O emissions, microbial N cycling communities, and N2O sources. Ammonia oxidizing bacteria (AOB) were the most active nitrifiers following urine addition. Denitrifiers contributed the most N2O in urine amended soils and their dynamics varied. After urine deposition, nirS gene abundance and transcript increases were greater and more sustained than nirK, while nirK increased activity more rapidly but did not increase gene abundance. Urine toxicity and increased clade II nosZ transcription likely reduced initial N2O emissions at high urea concentrations, resulting in no difference between cumulative soil N2O fluxes between urea rates and a lower urine-N emission factor for high urea soils. These findings support the use of non-bloat legumes in pastures, particularly when considering the potential reduction in enteric methane emissions, reducing net pasture system GHG emissions.
      Degree
      Master of Science (M.Sc.)
      Department
      Soil Science
      Program
      Soil Science
      Supervisor
      Helgason, Bobbi; Arcand, Melissa
      Committee
      Knight, Diane; Schoenau, Jeff; Thompson, Karen
      Copyright Date
      January 2021
      URI
      http://hdl.handle.net/10388/13209
      Subject
      nitrous oxide
      carbon dioxide
      cattle pasture
      non-bloat legume
      soil
      microbiology
      molecular ecology
      nitrification
      denitrification
      nitrifier
      denitirifier
      DNA
      mRNA
      qPCR
      isotope
      isotopomer
      PLFA
      enzyme
      greenhouse gas
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy