University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      A Summary of the FV Homomorphic Encryption Scheme and the Average-Case Noise Growth

      Thumbnail
      View/Open
      PERRIN-THESIS-2021.pdf (598.3Kb)
      Date
      2021-09-20
      Author
      Perrin, Derek
      ORCID
      0000-0001-5496-7055
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Homomorphic encryption is a method of encryption that allows for secure computation of data. Many industries are moving away from owning expensive high-powered computers and instead delegating costly computations to the cloud. In an age of data breaches, there is an inherent risk when putting sensitive data on the cloud. Homomorphic encryption allows one to securely perform computations on the cloud without allowing the host or any other party access to the raw data itself. One application being explored is encrypting health data on low-powered embedded devices, uploading it to a cloud application, performing computations to assess health risks, and send the results back to the user’s device for decryption and interpretation. Another application being explored is digital voting. This thesis aims to provide a summary of the current state-of-the-art of homomorphic encryption. We will begin by providing the reader with sources for the current main im- plementations and schemes they are based on. We will then present the mathematical background used in existing schemes. This includes a background on lattices, cyclotomic fields, rings of integers, and the underlying believed-to-be-hard problems existing schemes take advantage of. We will then shift our attention to the FV scheme which is based on the ring-LWE problem and is one of the main schemes used today. We will then briefly discuss some optimizations used in FV implementations. Finally, we will look at some probabilistic experiments which suggest the noise growth in FV is significantly lower than the theoretical maximum in the average case, and will explore some of the benefits that can be gained.
      Degree
      Master of Science (M.Sc.)
      Department
      Mathematics and Statistics
      Program
      Mathematics
      Supervisor
      Franc, Cameron
      Committee
      Rajchgot, Jenna; Rayan, Steven; Osgood, Nathaniel
      Copyright Date
      September 2021
      URI
      https://hdl.handle.net/10388/13577
      Subject
      cryptography
      homomorphic encryption
      lattice cryptography
      ideal lattices
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      The University of Saskatchewan's main campus is situated on Treaty 6 Territory and the Homeland of the Métis.

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy