University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Computing Fast and Scalable Table Cartograms for Large Tables

      Thumbnail
      View/Open
      HASAN-THESIS-2021.pdf (14.93Mb)
      Date
      2021-11-18
      Author
      Hasan, Mohammad Rakib
      ORCID
      https://orcid.org/0000-0003-2378-7507
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Given an m x n table T of positive weights and a rectangle R with an area equal to the sum of the weights, a table cartogram computes a partition of R into m x n convex quadrilateral faces such that each face has the same adjacencies as its corresponding cell in T, and has an area equal to the cell's weight. In this thesis, we explored different table cartogram algorithms for a large table with thousands of cells and investigated the potential applications of large table cartograms. We implemented Evans et al.'s table cartogram algorithm that guarantees zero area error and adapted a diffusion-based cartographic transformation approach, FastFlow, to produce large table cartograms. We introduced a constraint optimization-based table cartogram generation technique, TCarto, leveraging the concept of force-directed layout. We implemented TCarto with column-based and quadtree-based parallelization to compute table cartograms for table with thousands of cells. We presented several potential applications of large table cartograms to create the diagrammatic representations in various real-life scenarios, e.g., for analyzing spatial correlations between geospatial variables, understanding clusters and densities in scatterplots, and creating visual effects in images (i.e., expanding illumination, mosaic art effect). We presented an empirical comparison among these three table cartogram techniques with two different real-life datasets: a meteorological weather dataset and a US State-to-State migration flow dataset. FastFlow and TCarto both performed well on the weather data table. However, for US State-to-State migration flow data, where the table contained many local optima with high value differences among adjacent cells, FastFlow generated concave quadrilateral faces. We also investigated some potential relationships among different measurement metrics such as cartographic error (accuracy), the average aspect ratio (the readability of the visualization), computational speed, and the grid size of the table. Furthermore, we augmented our proposed TCarto with angle constraint to enhance the readability of the visualization, conceding some cartographic error, and also inspected the potential relationship of the restricted angles with the accuracy and the readability of the visualization. In the output of the angle constrained TCarto algorithm on US State-to-State migration dataset, it was difficult to identify the rows and columns for a cell upto 20 degree angle constraint, but appeared to be identifiable for more than 40 degree angle constraint.
      Degree
      Master of Science (M.Sc.)
      Department
      Computer Science
      Program
      Computer Science
      Supervisor
      Mondal, Debajyoti
      Committee
      Keil, Mark; Stakhanova, Natalia; Khan, Shahedul
      Copyright Date
      November 2021
      URI
      https://hdl.handle.net/10388/13681
      Subject
      Table Cartogram
      Data Visualization
      Algorithm
      Image Processing
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy