University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Elucidating the Role of Altered Heterogeneous Nuclear Ribonucleoprotein A1 Expression in the Pathogenesis of Neurodegeneration in an In Vitro Model of Multiple Sclerosis

      Thumbnail
      View/Open
      ANEES-THESIS-2022.pdf (2.879Mb)
      Date
      2022-01-19
      Author
      Anees, Amber
      ORCID
      0000-0002-3474-5399
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Neuronal and axonal damage, collectively known as neurodegeneration, are salient pathogenic features of multiple sclerosis (MS) and are thought to underlie permanent disability in MS, particularly in progressive forms of the disease. Despite decades of research, the etiology of neurodegeneration in MS remains relatively unknown and there are no treatments available that target its pathogenesis. Research in MS as well as other neurologic diseases has established that dysfunctional RNA binding proteins (RBPs) are a prominent pathogenic feature and may contribute to the pathogenesis of neurodegeneration. Neurons from MS cortex have been shown to exhibit dysfunctional features of the RBP heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), whereby hnRNP A1 is mislocalized from its homeostatic nuclear location to the cytoplasm, resulting in loss of hnRNP A1 function within the neuron. We hypothesized that loss-of-function of hnRNP A1 modelled using siRNA in differentiated Neuro-2a cells would have detrimental effects on neuronal health and viability. Through RNA sequencing (RNAseq) followed by gene ontology (GO) analyses, we found that hnRNP A1 is involved in important biological processes, including RNA metabolism, neuronal function, neuronal morphology, neuronal viability, and stress granule (SG) formation. We confirmed several of these roles by showing that hnRNP A1 knockdown caused a reduction of neurite outgrowth (p<0.001), which correlated with decreased hnRNP A1 expression (p<0.05), increased cell cytotoxicity (p<0.05), and increased punctate staining of a necroptotic cell death marker, phospho-mixed lineage kinase domain like pseudokinase (pMLKL). Additionally, we demonstrated that hnRNP A1 knockdown disrupts the formation of cytoplasmic SGs (p<0.0001) after stress induction. These findings present novel insights into how hnRNP A1 loss-of-function in neurons may contribute to neuronal dysfunction and death. Further, it implicates hnRNP A1 dysfunction, particularly decreased hnRNP A1 expression, in the pathogenesis of neurodegeneration in MS and other neurodegenerative diseases.
      Degree
      Master of Science (M.Sc.)
      Department
      Medicine
      Program
      Health Sciences
      Supervisor
      Levin, Michael
      Committee
      Kelly, Michael; Cayabyab, Francisco; Krishnan, Anand
      Copyright Date
      June 2022
      URI
      https://hdl.handle.net/10388/13787
      Subject
      Multiple Sclerosis
      Neurodegeneration
      Dysfunctional RNA binding proteins
      hnRNP A1
      Neuro-2a cell line
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      The University of Saskatchewan's main campus is situated on Treaty 6 Territory and the Homeland of the Métis.

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy