University of SaskatchewanHARVEST
  • Login
  • Submit Your Research
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Increasing the performance of the Wetland DEM Ponding Model using multiple GPUs

      Thumbnail
      View/Open
      LIU-THESIS-2021.pdf (1.762Mb)
      Date
      2021-06-30
      Author
      Liu, Tonghe
      ORCID
      0000-0002-2714-3103
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Due to the lack of conventional drainage systems on the Canadian Prairies, when excess water runs off the landscape because of the snow-melt and heavy rainfall, the water may be trapped in surface depressions ranging in size from puddles to permanent wetlands and may cause local flooding. Hydrological processes play an important role in the Canadian Prairies regions, and using hydrological simulation models helps people understand past hydrological events and predict future ones. In order to obtain an accurate simulation, higher-resolution systems and larger simulation areas are introduced, and those lead to the need to solve larger-scale problems. However, the size of the problem is often limited by available computational resources, and solving large systems results in unacceptable simulation durations. Therefore, improving the computational efficiency and taking advantage of available computational resources is an urgent task for hydrological researchers and software developers. The Wetland DEM Ponding Model (WDPM) was developed to model the distribution of runoff water on the Canadian Prairies. It helps determine the fraction of Prairie basins contributing flows to stream while these change dynamically with water storage in the depressions. In the WDPM, the water redistribution module is the most computationally intensive part. Previously, the WDPM has been developed to run in parallel with one CPU or one GPU that makes the water redistribution module more efficient. Multi-device parallel computing is a common method to increase the available computation resources and could effectively speed up the application with an appropriate parallel algorithm. This thesis develops a multiple-GPU parallel algorithm and investigates efficient data transmission methods compared to the CPU parallel and one-GPU parallel algorithm. A technique that overlaps communication with computation is applied to optimize the parallel computing process. Then the thesis evaluates the new implementation from several aspects. In the first step, the output summary and the output system are compared between the new implementation and the initial one. The solution shows significant convergence as the simulation processes, verifying the new implementation produces the correct result. In the second step, the multiple-GPU code is profiled, and it is verified that the algorithm can be re-organized to take advantage of multiple GPUs and carry out efficient data synchronization through optimized techniques. Finally, by means of numerical experiments, the new implementation shows performance improvement when using multiple GPUs and demonstrates good scaling. In particular, when working with a large system, the multiple-GPU implementation produces correct output and shows that there is around 2.35 times improvement in the performance compared using four GPUs with using one GPU.
      Degree
      Master of Science (M.Sc.)
      Department
      Computer Science
      Program
      Computer Science
      Supervisor
      Spiteri, Raymond; Ko, Seok-Bum
      Committee
      Schneider, Kevin; Makaroff, Dwight; Loukili, Youssef
      Copyright Date
      June 2021
      URI
      https://hdl.handle.net/10388/13818
      Subject
      GPU
      parallel computing
      OpenCL
      hydrological model
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy