University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      HYDROLOGICAL CHARACTERIZATION OF A SULPHIDE WASTE ROCK DUMP

      Thumbnail
      View/Open
      Saretzky_Gregory_Thomas_1998_sec.pdf (17.27Mb)
      Date
      1998
      Author
      Saretzky, Gregory Thomas
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Acid rock drainage (ARD) from sulphide bearing waste rock dumps poses a serious threat to the environment and has become problematic to the mining industry. Water that is discharged from sulphide waste rock dumps has the potential to be low in pH, thus having the ability to transport heavy metals. The acid water and the heavy metals in solution became toxic to the environment. Acid rock drainage from sulphide bearing waste rock dumps is the most serious environmental liability in the mining industry; believed to be $3.2 billion for 750 million tonnes of waste rock in Canada alone (Feasby et al., 1997). The understanding of the characteristics and quantity of water flow through waste rock has become fundamental. A complete hydrologic characterization was performed for the sulphide waste rock dump at Equity Silver Mine Ltd. near Houston, Be (575 km north northwest of Vancouver, Canada). The characterization of the hydrologic system entailed the investigation of five elements: geologic structure, topography, surface hydrology, groundwater and water chemistry. The hydrologic budget was determined for the waste rock dump. The components are as follows: precipitation, runoff, sublimation, mass transfer, evapotranspiration, changes in storage, infiltration and groundwater. Precipitation was measured with an on site weather station. The runoff was measured for the 1998 freshet with a series of weirs and culverts that were instrumented to measure runoffwater. The remaining surface components were determined by the SoilCover (1997) model, a one dimensional finite difference heat and mass transfer program. The groundwater component was investigated using a numerical model, FEMW A TER (ECGL, 1998), which can solve three dimensional saturated or unsaturated groundwater flow regime systems. All of the surface hydrological components are required in order to equalize the surface water balance for the waste rock dump. The components of the surface hydrological budget during the one year study period over the area of the waste rock dump are as follows: precipitation of 642 mm, 94 rnm (15 %) runoff, 327 mm (51 %) evapotranspiration, 27 rnm (4 %) infiltration, 97 mm (15 %) sublimation and 97 rnm (15 %) mass transfer. The cover system lost 9 rnm of water during the one year study period; thus the net surface infiltration was 36 rnm (6 %). The water balance relationship for the acid rock drainage collection ditch that surrounds the waste rock dump was evaluated. The contributions to the ditch are: runoff, infiltration, groundwater discharge and changes in storage. The water balance for the drainage ditch showed that the acid rock drainage flow reporting to the ditch is equivalent to 318 rnm of water per year over the area of the waste rock dump. The components of this total flow are estimated to be 36 mm (11 %) infiltration, 27 mm (9 %) runoff, 252 mm (79 %) groundwater discharge and 3 mm (1 %) due to changes in storage within the waste rock.
      Degree
      Master of Science (M.Sc.)
      Department
      Civil Engineering
      Program
      Civil Engineering
      Supervisor
      Wilson, G. Ward
      Copyright Date
      1998
      URI
      http://hdl.handle.net/10388/5744
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      The University of Saskatchewan's main campus is situated on Treaty 6 Territory and the Homeland of the Métis.

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy