University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Allosteric inhibitors of dihydrodipicolinate synthase

      Thumbnail
      View/Open
      BHAGWAT-THESIS-2016.pdf (3.083Mb)
      Date
      2016-11-03
      Author
      Bhagwat, Aarti 1987-
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Dihydrodipicolinate synthase (DHDPS) is an enzyme which catalyzes the first step of the lysine biosynthesis pathway in bacteria and plants. Deletion of the gene encoding DHDPS results in non-viable bacteria, therefore DHDPS is considered a validated drug target. The enzyme is feedback-regulated by lysine, and structural studies have shown that the tetrameric enzyme contains two allosteric sites, each of which bind two lysine molecules. The Palmer laboratory has previously developed a potent inhibitor "bislysine" that mimics the structure of two bound lysine molecules. Previous work showed that S-aminoethylcysteine ("thialysine") was a much poorer inhibitor than lysine, despite the structural similarity of the two compounds. This thesis describes the synthesis of new allosteric inhibitors of DHDPS, with the goal of defining their structural and chemical properties, such as inhibitor side chain length and pKa, that lead to inhibition. Racemic analogs of lysine were generated using the amidomalonic ester synthesis. Analogs of bislysine were generated from dimethyl 2,5-bis([(tertbutoxy)carbonyl]amino) hexanedioate by treatment with lithium diisopropylamide followed by alkylation using various electrophiles. This alkylation step hampers the overall process because it proceeds in low yield (typically near 10%). Studies were undertaken in an attempt to understand the factors influencing this reaction; however, variations in the reaction times, solvent composition, and additives did not improve the yield appreciably. All the inhibitors were tested using the established DHDPS-DHDPR coupled assay to estimate the IC50 values. The lysine analogue (±)-(E)-2,6-diaminohex-4-enoic acid, which has a double bond in the side chain as the only modification, showed weaker inhibition (IC50 = 3.7 mM) compared to racemic lysine (IC50 = 0.2 mM). The altered pKa of the ε-amino group, which makes a hydrogen bond with His59 when bound to the allosteric site, is proposed to account for the loss of activity. Triazolylmethylglycine, which is predicted to have a pKa value closer to lysine, but contains a shorter side chain, was an even weaker inhibitor. Bis-amino acid versions of these compounds were much stronger inhibitors. A bis-analog of para-aminobenzylglycine showed weak inhibition as well, suggesting this bulkier compound, with a much lower side chain pKa, could still bind to the allosteric cavity.
      Degree
      Master of Science (M.Sc.)
      Department
      Chemistry
      Program
      Chemistry
      Supervisor
      Palmer, David
      Committee
      Majewski, Marek; Grosvenor, Andrew; Dimmock, Jonathan
      Copyright Date
      September 2016
      URI
      http://hdl.handle.net/10388/7562
      Subject
      allosteric
      inhibitors
      synthesis
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy