University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      The Role of Mammalian Mitofusin-2 (Mfn-2) in Lipid Metabolism

      Thumbnail
      View/Open
      AMBILWADE-THESIS-2017.pdf (2.751Mb)
      Date
      2017-02-22
      Author
      Ambilwade, Prashant of 1984-
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      The architecture of mitochondria is closely associated with numerous functions for cell signaling, growth and senescence. The overall phenomenon of mitochondrial dynamics, which include fusion and fission events, characterizes the fundamental mechanism governing the cell’s bioenergetic needs. Mitofusins are fusogenic proteins that have emerged as key regulators of diverse functions such as respiration, mitochondrial biogenesis, and energy homeostasis. Thus, mitochondrial dynamics and bioenergetics together control the energy demand to supply ratio. Mitofusins (1 and 2) are both intricately associated with mitochondria and mitochondrial associated membranes (MAMs). These organellar communication sites drive and regulate mitochondrial metabolism and energy homeostasis. Although both mitofusin-1 (Mfn-1) and mitofusin 2 (Mfn-2) share some common roles, Mfn-1 is primarily involved in the fusion of the outer mitochondrial membrane, while Mfn-2 primarily affects mitochondrial metabolism by controlling the electron transport chain, fuel oxidation and mitochondrial membrane potential. The research presented in this thesis centers around the Mfn-2 fusion protein. Specifically, it focuses on the change in mitochondrial morphology and lipid content in the absence of Mfn-2. It was observed that the knockout of Mfn-2 in mouse embryonic stem fibroblasts (MEFs) drastically altered mitochondrial morphology and simultaneously increased lipid droplet size but not number. When cells were provided a further substrate for triglyceride synthesis i.e. oleic acid, the Mfn-2 KO MEFs showed an enhanced capacity to increase the number of lipid droplets compared to WT cells. In Mfn-2 knockout MEF cells, the ability to undergo adipogenesis is enhanced compared to WT MEF cells. Surprisingly we also observed that adipogenesis was induced with control, non-adipogenic media, supplemented with a high concentration (20%) of fetal bovine serum. In conclusion, the data suggest that Mfn-2 is a crucial protein controlling mitochondrial morphology, which has a major role in maintaining cellular homeostasis and lipid metabolism.
      Degree
      Master of Science (M.Sc.)
      Department
      Biochemistry
      Program
      Biochemistry
      Supervisor
      Roesler, Bill
      Committee
      Moore, Stanley; Gray, Gordon; Krone, Pat
      Copyright Date
      February 2017
      URI
      http://hdl.handle.net/10388/7764
      Subject
      Mitochondria fusion fission dynamics, Lipid droplets, Mitofusin
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      The University of Saskatchewan's main campus is situated on Treaty 6 Territory and the Homeland of the Métis.

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy