Repository logo
 

Study of Radiation Effects on 28nm UTBB FDSOI Technology

Date

2017-11-07

Authors

Journal Title

Journal ISSN

Volume Title

Publisher

ORCID

0000-0002-9498-7883

Type

Thesis

Degree Level

Doctoral

Abstract

With the evolution of modern Complementary Metal-Oxide-Semiconductor (CMOS) technology, transistor feature size has been scaled down to nanometers. The scaling has resulted in tremendous advantages to the integrated circuits (ICs), such as higher speed, smaller circuit size, and lower operating voltage. However, it also creates some reliability concerns. In particular, small device dimensions and low operating voltages have caused nanoscale ICs to become highly sensitive to operational disturbances, such as signal coupling, supply and substrate noise, and single event effects (SEEs) caused by ionizing particles, like cosmic neutrons and alpha particles. SEEs found in ICs can introduce transient pulses in circuit nodes or data upsets in storage cells. In well-designed ICs, SEEs appear to be the most troublesome in a space environment or at high altitudes in terrestrial environment. Techniques from the manufacturing process level up to the system design level have been developed to mitigate radiation effects. Among them, silicon-on-insulator (SOI) technologies have proven to be an effective approach to reduce single-event effects in ICs. So far, 28nm ultra-thin body and buried oxide (UTBB) Fully Depleted SOI (FDSOI) by STMicroelectronics is one of the most advanced SOI technologies in commercial applications. Its resilience to radiation effects has not been fully explored and it is of prevalent interest in the radiation effects community. Therefore, two test chips, namely ST1 and AR0, were designed and tested to study SEEs in logic circuits fabricated with this technology. The ST1 test chip was designed to evaluate SET pulse widths in logic gates. Three kinds of the on-chip pulse-width measurement detectors, namely the Vernier detector, the Pulse Capture detector and the Pulse Filter detector, were implemented in the ST1 chip. Moreover, a Circuit for Radiation Effects Self-Test (CREST) chain with combinational logic was designed to study both SET and SEU effects. The ST1 chip was tested using a heavy ion irradiation beam source in Radiation Effects Facility (RADEF), Finland. The experiment results showed that the cross-section of the 28nm UTBB-FDSOI technology is two orders lower than its bulk competitors. Laser tests were also applied to this chip to research the pulse distortion effects and the relationship between SET, SEU and the clock frequency. Total Ionizing Dose experiments were carried out at the University of Saskatchewan and European Space Agency with Co-60 gammacell radiation sources. The test results showed the devices implemented in the 28nm UTBB-FDSOI technology can maintain its functionality up to 1 Mrad(Si). In the AR0 chip, we designed five ARM Cortex-M0 cores with different logic protection levels to investigate the performance of approximate logic protecting methods. There are three custom-designed SRAM blocks in the test chip, which can also be used to measure the SEU rate. From the simulation result, we concluded that the approximate logic methodology can protect the digital logic efficiently. This research comprehensively evaluates the radiation effects in the 28nm UTBB-FDSOI technology, which provides the baseline for later radiation-hardened system designs in this technology.

Description

Keywords

Single Event Transient, FDSOI,

Citation

Degree

Doctor of Philosophy (Ph.D.)

Department

Electrical and Computer Engineering

Program

Electrical Engineering

Advisor

Citation

Part Of

item.page.relation.ispartofseries

DOI

item.page.identifier.pmid

item.page.identifier.pmcid