University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Catalysts Development For The Conversion of Syngas to Higher Alcohols Using Alkali-promoted MoS2-based Catalysts Over Carbon Supports

      Thumbnail
      View/Open
      BOAHENE-DISSERTATION-2017.pdf (9.598Mb)
      Date
      2017-11-29
      Author
      Boahene, Philip Effah 1981-
      Type
      Thesis
      Degree Level
      Doctoral
      Metadata
      Show full item record
      Abstract
      Conversion of syngas to mixed (C1-C5) and higher (C2+) alcohols over alkali-doped MoS2 (ADM) catalysts, promoted with cobalt (Co) and rhodium (Rh), has exhibited great potential for commercial higher alcohols synthesis (HAS) reaction. Carbon-based supports with attractive physico-chemical and mechanical properties have immense potential to be explored for the HAS catalyst development. Due to their characteristic properties such as high surface area, thermal stability, and chemical inertness, this Ph.D study sought to explore three main carbon-based supports namely; multi-walled carbon nanotubes (MWCNTs), ordered mesoporous carbon (OMC) and carbon nanohorns (CNHs) for HAS catalyst formulation. The overall research objective was to explore options to develop novel carbon-supported ADM catalyst systems to effectively convert syngas to higher alcohols. The novelty of the work is in two folds: 1) to investigate the influence of binders incorporation, pelletization, and particle size on the HAS reactions using carbon (MWCNT, OMC and CNH)-supported KCoRhMoS2 catalyst systems; and 2) to explore OMCs and CNHs as new support systems for the HAS reactions. The influence of binders (bentonite clay, coal tar, and humic acid) addition, catalyst pelletization as well as the comparison of MWCNT and large-pore OMC-supported KCoRhMo catalyst systems were investigated in phases 1 and 2, respectively. Extensive studies in phases 3, 4 and 5 are enumerated as: 3) the comparative study of chemical pre-treatments (acid and base) of OMC-supported KCoRhMoS2 catalysts; 4) the optimization of binder (BC) loadings on OMC-supported KCoRhMoS2 catalysts and their catalytic performance study; and 5) the synthesis, characterization and application of novel K-promoted CoRhMo catalysts supported over CNH and its by-products (OCPf & OCP) for the HAS reactions. Finally, the impacts of process parameters (temperature, pressure, and gas-hourly-space-velocity) were evaluated using the optimum KCoRhMo/CNH catalyst. The power law model was then used to fix the experimental data in the kinetic study to ascertain the activation energies (Ea) of ethanol and propanol. Low values of Ea (54.4 and 92.2 kJ/mol, respectively) were obtained compared to those reported by other researchers. Long-term deactivation study of the sulfided KCoRhMo/CNH catalyst corroborated its durability over 500 h of continuous HAS reaction in a fixed bed reactor.
      Degree
      Doctor of Philosophy (Ph.D.)
      Department
      Chemical and Biological Engineering
      Program
      Chemical Engineering
      Supervisor
      Dalai, Dr. Ajay K; Sammynaiken, Dr. Ramaswami
      Committee
      Meda, Dr. Venkatesh; Wang, Dr. Hui; Soltan, Dr. Jafar M; Wilson, Dr. Lee
      Copyright Date
      October 2017
      URI
      http://hdl.handle.net/10388/8285
      Subject
      Higher alcohol synthesis, CO hydrogenation, alkali, MoS2-based catalyst, carbon supports.
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      The University of Saskatchewan's main campus is situated on Treaty 6 Territory and the Homeland of the Métis.

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy