University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      TRACE FOSSILS, SEDIMENTARY FACIES AND PARASEQUENCE ARCHITECTURE FROM THE LOWER CRETACEOUS MULICHINCO FORMATION OF ARGENTINA: THE ROLE OF FAIR-WEATHER WAVES IN SHOREFACE DEPOSITS

      Thumbnail
      View/Open
      WESOLOWSKI-THESIS-2018.pdf (8.162Mb)
      Date
      2018-03-23
      Author
      Wesolowski, Lindsey John-Nicholas 1990-
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Shorefaces can display strong facies variability and integration of sedimentology and ichnology provides a high-resolution model to identify variations among strongly storm-dominated (high energy), moderately storm-affected (intermediate energy), and weakly storm-affected (low energy) shoreface deposits. In addition, ichnology has proved to be of help to delineate parasequences as trace-fossil associations are excellent indicators of environmental conditions which typically change along the depositional profile. Shallow-marine deposits and associated ichnofaunas from the Mulichinco Formation (Valanginian, Lower Cretaceous) in Puerta, Curaco, Neuquén Basin, western Argentina, were analyzed to evaluate stress factors on shoreface benthos and parasequence architecture. During storm-dominated conditions, the Skolithos Ichnofacies prevails within the offshore transition and lower shoreface represented by assemblages dominated by Thalassinoides isp. and Ophiomorpha irregulaire. Under weakly storm-affected conditions, the Cruziana Ichnofacies is recognized, characterized by assemblages dominated by Thalassinoides isp. and Gyrochorte comosa in the offshore transition, and by Gyrochorte comosa within the lower shoreface. Storm-influenced conditions yield wider ichnologic variability, showing elements of both ichnofacies. Storm influence on sedimentation is affected by both allogenic (e.g. tectonic subsidence, sea-level, and sediment influx) and autogenic (e.g. hydrodynamic) controls at both parasequence and intra-parasequence scales. Four distinct types of parasequences were recognized, strongly storm-dominated, moderately storm-affected, moderately storm-affected - strongly fair-weather reworked, and weakly storm-affected, categorized based on parasequence architectural variability derived from varying degrees of storm and fair-weather wave influence. The new type of shoreface described here, the moderately storm-affected - strongly fair-weather reworked shoreface, features storm deposits reworked thoroughly by fair-weather waves. During fair-weather wave reworking, elements of the Cruziana Ichnofacies are overprinted upon relict elements of the Skolithos Ichnofacies from previous storm induced deposition. The type of shoreface, commonly overlooked in past literature, expands our understanding of the sedimentary dynamics and stratigraphic architecture in a shoreface susceptible to various parasequence and intra-parasequence scale degrees of storm and fair-weather wave influence.
      Degree
      Master of Science (M.Sc.)
      Department
      Geological Sciences
      Program
      Geology
      Supervisor
      Buatois, Luis A; Mangano, Gabriela M
      Committee
      Renaut, Robin; Hawke, Chris; Basinger, Jim
      Copyright Date
      March 2018
      URI
      http://hdl.handle.net/10388/8483
      Subject
      parasequences
      shoreface variability
      fair-weather waves
      Mulichinco Formation
      Neuquén Basin
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy