TRACE FOSSILS, SEDIMENTARY FACIES AND PARASEQUENCE ARCHITECTURE FROM THE LOWER CRETACEOUS MULICHINCO FORMATION OF ARGENTINA: THE ROLE OF FAIR-WEATHER WAVES IN SHOREFACE DEPOSITS

View/ Open
Date
2018-03-23Author
Wesolowski, Lindsey John-Nicholas 1990-
Type
ThesisDegree Level
MastersMetadata
Show full item recordAbstract
Shorefaces can display strong facies variability and integration of sedimentology and ichnology provides a high-resolution model to identify variations among strongly storm-dominated (high energy), moderately storm-affected (intermediate energy), and weakly storm-affected (low energy) shoreface deposits. In addition, ichnology has proved to be of help to delineate parasequences as trace-fossil associations are excellent indicators of environmental conditions which typically change along the depositional profile. Shallow-marine deposits and associated ichnofaunas from the Mulichinco Formation (Valanginian, Lower Cretaceous) in Puerta, Curaco, Neuquén Basin, western Argentina, were analyzed to evaluate stress factors on shoreface benthos and parasequence architecture.
During storm-dominated conditions, the Skolithos Ichnofacies prevails within the offshore transition and lower shoreface represented by assemblages dominated by Thalassinoides isp. and Ophiomorpha irregulaire. Under weakly storm-affected conditions, the Cruziana Ichnofacies is recognized, characterized by assemblages dominated by Thalassinoides isp. and Gyrochorte comosa in the offshore transition, and by Gyrochorte comosa within the lower shoreface. Storm-influenced conditions yield wider ichnologic variability, showing elements of both ichnofacies.
Storm influence on sedimentation is affected by both allogenic (e.g. tectonic subsidence, sea-level, and sediment influx) and autogenic (e.g. hydrodynamic) controls at both parasequence and intra-parasequence scales. Four distinct types of parasequences were recognized, strongly storm-dominated, moderately storm-affected, moderately storm-affected - strongly fair-weather reworked, and weakly storm-affected, categorized based on parasequence architectural variability derived from varying degrees of storm and fair-weather wave influence. The new type of shoreface described here, the moderately storm-affected - strongly fair-weather reworked shoreface, features storm deposits reworked thoroughly by fair-weather waves. During fair-weather wave reworking, elements of the Cruziana Ichnofacies are overprinted upon relict elements of the Skolithos Ichnofacies from previous storm induced deposition. The type of shoreface, commonly overlooked in past literature, expands our understanding of the sedimentary dynamics and stratigraphic architecture in a shoreface susceptible to various parasequence and intra-parasequence scale degrees of storm and fair-weather wave influence.
Degree
Master of Science (M.Sc.)Department
Geological SciencesProgram
GeologySupervisor
Buatois, Luis A; Mangano, Gabriela MCommittee
Renaut, Robin; Hawke, Chris; Basinger, JimCopyright Date
March 2018Subject
parasequences
shoreface variability
fair-weather waves
Mulichinco Formation
Neuquén Basin