Show simple item record

dc.contributor.authorDavid, C.
dc.contributor.authorFarrell, R.E.
dc.contributor.authorHelgason, W.
dc.date.accessioned2018-07-23T01:43:59Z
dc.date.available2018-07-23T01:43:59Z
dc.date.issued2013-03-05
dc.identifier.urihttp://hdl.handle.net/10388/9030
dc.description.abstractIn response to increasing global food demands, the proportion of irrigated agricultural land within the Canadian Prairies is likely to increase. However, the implications of this with respect to the agricultural greenhouse gas (GHG) balance are not well understood. This study investigates and compares the greenhouse gas intensity of a typical irrigated and dryland cropping system in Saskatchewan, a semi-arid region of the Canadian Prairies. Compared to their dryland counterpart, irrigated cropping systems have higher GHG emissions which are a result of the energy used for pumping and larger nitrous oxide (N2O) production rates associated with higher N-fertilizer application and moist soil conditions. These emissions may be partially offset by increased carbon sequestration from the greater productivity realized through irrigation. This investigation focuses on the quantification of soil GHG emissions through chamber-based flux measurements. Factors driving these emissions have been determined through in-situ soil temperature, matric potential, and moisture measurements. The emissions associated with pumping and other crop management activities are accounted for using the Intergovernmental Panel on Climate Change (IPCC) literature and methodology. Preliminary results from the first season of study confirm that irrigated cropping systems have greater greenhouse gas intensity. Soil N2O emissions from the irrigated system were four times greater than the dryland and were the greatest source of emissions for the irrigated system. Diesel combustion used to power equipment was comparable between cropping systems. Emissions associated with pumping were notable; however, due to the wet growing season they remained smaller than could be expected most years. The information derived from this study will aid in the development of regional specific soil emission factors, improved management strategies, and will identify new approaches for mitigating emissions.en_US
dc.language.isoenen_US
dc.relation.ispartofSoils and Crops Workshop
dc.rightsAttribution-NonCommercial-NoDerivs 2.5 Canada*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/ca/*
dc.subjectsemi-arid prairieen_US
dc.subjectgreenhouse gas emissionsen_US
dc.subjectgreenhouse gas intensityen_US
dc.titleGreenhouse gas intensity of an irrigated cropping system in Saskatchewanen_US
dc.typePoster Presentationen_US
dc.description.versionNon-Peer Reviewed


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 2.5 Canada
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 2.5 Canada