University of SaskatchewanHARVEST
  • Login
  • Submit Your Research
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Effect of Submerged Arc Welding Parameters on the Microstructure of SA516 and A709 Steel Welds

      Thumbnail
      View/Open
      AMANIE-DISSERTATION.pdf (8.428Mb)
      Date
      2011-09-23
      Author
      Amanie, James
      Type
      Thesis
      Degree Level
      Doctoral
      Metadata
      Show full item record
      Abstract
      The effects of submerged arc welding (SAW) current and speed on the microstructures of SA516 grade 70 and A709 grade 50 steel welds were studied in this research. Steel plates 17 mm-thick were submerged arc welded using different welding currents (from 700 to 850 A) and welding speeds (from 5.3 to 15.3 mm/s). The effect of heat input on the weld metal chemistry, morphologies and chemistry of inclusions and nucleation of acicular ferrite (AF), grain boundary ferrite (GBF) and Widmanstatten ferrite (WF) were evaluated. Optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) microanalysis and transmission electron microscopy (TEM) were used to examine the microstructures of the developed weld joints. PAX-it image analysis software program was utilized for quantitative analysis of the microstructures. The results showed that it is difficult to ascribe changes in the microstructure that occurred in the heat affected zone (HAZ) and the weld metal regions to a single welding process parameter. Inclusion analysis revealed two types of inclusions formed in the weld metals for both steels. They are spherical and faceted inclusions. It was also observed that acicular ferrite nucleated only on the spherical inclusions. EDS analysis showed that the two inclusions have different chemical compositions. The results further showed that the total oxygen content of the weld metals of both steels generally increased with welding current, but decreased with increasing welding speed. The prior austenite grain width decreased with increasing welding speed, but increased with increasing welding current (increased heat input). For both SA516 and A709 steel welds, the proportion of acicular ferrite (AF) in the weld metals increased initially, while those of grain boundary ferrite (GBF) and Widmanstatten ferrite (WF) decreased with increasing welding current when welding current was increased from 700 A to 800 A. With further increase in the welding current above 800 A, less acicular ferrite was produced as both GBF and WF proportions increased. However, welding speed did not affect appreciably the amounts of ferrite products in the weld metals. Non-linear regression models were developed using welding current and welding speed to predict the ferrites (AF, GBF, WF) that formed in the weld metals of the two steels. The adequacy of the models was checked by using the F-statistics.
      Degree
      Doctor of Philosophy (Ph.D.)
      Department
      Mechanical Engineering
      Program
      Mechanical Engineering
      Supervisor
      Yannacopoulos, Spiro; Oguocha, Ikechukwuka
      Committee
      Torvi, David; Odeshi, Akindele; Boulfiza, Mohamed
      Copyright Date
      July 2011
      URI
      http://hdl.handle.net/10388/ETD-2011-07-42
      Subject
      Microstructure, Acicular ferrite, Grain boundary ferrite, Widmanstatten ferrite.
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy