University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Damping Power System Oscillations Using an SSSC-Based Hybrid Series Capacitive Compensation Scheme

      Thumbnail
      View/Open
      UNAL-THESIS.pdf (5.417Mb)
      Date
      2011-09-13
      Author
      Unal, Irfan
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Interconnection of electric power systems is becoming increasingly widespread as part of the power exchange between countries as well as regions within countries in many parts of the world. There are numerous examples of interconnection of remotely separated regions within one country. Such are found in the Nordic countries, Argentina, and Brazil. In cases of long distance AC transmission, as in interconnected power systems, care has to be taken for safeguarding of synchronism as well as stable system voltages, particularly in conjunction with system faults. With series compensation, bulk AC power transmission over very long distances (over 1000 km) is a reality today. These long distance power transfers cause, however, the system low-frequency oscillations to become more lightly damped. As a result, many power network operators are taking steps to add supplementary damping devices in their systems to improve the system security by damping these undesirable oscillations. With the advent of voltage sourced converter-based series compensation, AC power system interconnections can be brought to their fullest benefit by optimizing their power transmission capability, safeguarding system stability under various operating conditions and optimizing the load sharing between parallel circuits at all times. This thesis reports the results of digital time-domain simulation studies that are carried out to investigate the effectiveness of a phase imbalanced hybrid single-phase-Static Synchronous Series Compensator (SSSC) compensation scheme in damping power system oscillations in multi-machine power systems. This scheme, which is feasible, technically sound, and has an industrial application potential, is economically attractive when compared with the full three-phase-SSSC. Time-domain simulations are conducted on a benchmark model using the ElectroMagnetic Transients Program (EMTP-RV). The results of the investigations have demonstrated that the hybrid single-phase-SSSC compensation scheme is very effective in damping power system oscillations at different loading profiles.
      Degree
      Master of Science (M.Sc.)
      Department
      Electrical and Computer Engineering
      Program
      Electrical Engineering
      Copyright Date
      August 2011
      URI
      http://hdl.handle.net/10388/ETD-2011-08-44
      Subject
      Single-Phase-SSSC, Power System Oscillations Damping
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      The University of Saskatchewan's main campus is situated on Treaty 6 Territory and the Homeland of the Métis.

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy