University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      A Step Towards Closed-loop Control of Chitosan Degradation: Conjoint Thermal and Enzymatic Effect, Modelling and Sensing

      Thumbnail
      View/Open
      ZHOU-THESIS.pdf (6.130Mb)
      Date
      2013-02-22
      Author
      Zhou, Li
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      In scaffold-based tissue engineering, control of scaffold degradation turns out to be a critical issue for reliable clinical applications. Degradation in this thesis refers to mass loss. Most of the present control methods take the approach of scaffold material modification and/or scaffold work environment adjustment to address this issue. The latter can easily get to its limit, and the former is not promising in the in-vivo implementation. This thesis proposed a new approach to control of scaffold degradation, that is, closed-loop and real-time control. To realize this approach, this thesis has tackled three important problems, namely (1) effects on degradation, (2) modeling of degradation, and (3) real-time measurement of degradation. This thesis is grounded to a biomaterial called chitosan, as it is widely used for building scaffolds. For the first problem, a statistical experiment was designed and a factorial analysis was conducted. For the second problem, a combined empirical-based and probabilistic-based approach was taken. For the third problem, a prototype of a sensor, which is based on the concept of carbon nanotube (CNT) conductive polymer, was built and tested. This thesis concludes (1) a joint thermal and enzymatic effect is significant on chitosan degradation, (2) the model for chitosan degradation is accurate, and (3) real-time measurement of mass loss of scaffold by means of carbon nanotube film is feasible. The major contributions of this thesis are (i) the proposal of the concept of the closed-loop control of degradation, (ii) a finding that there is a significant conjoint thermal and enzymatic effect on chitosan degradation in terms of mass loss, and (iii) a prototype of the novel CNT (carbon nanotube) chitosan film sensor for real-time measurement of mass loss of the scaffold. The significance of these contributions is that they give us confidence to a full development of the closed-loop and real-time degradation control approach. This approach appears promising to bring forth a transformative impact to clinic applications of scaffold-based tissue regeneration.
      Degree
      Master of Science (M.Sc.)
      Department
      Biomedical Engineering
      Program
      Biomedical Engineering
      Supervisor
      Zhang, Wenjun; Niu, Hui
      Committee
      Chen, Xiongbiao; Hedayat, Assem; Desai, Kaushik
      Copyright Date
      October 2011
      URI
      http://hdl.handle.net/10388/ETD-2011-10-183
      Subject
      biomaterial, scaffold degradation, degradation control, chitosan
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      The University of Saskatchewan's main campus is situated on Treaty 6 Territory and the Homeland of the Métis.

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy