University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Identification and Functional Studies of Arabidopsis thaliana Ubc13-interacting E3 Ubiquitin Ligases

      Thumbnail
      View/Open
      QIAN-THESIS.pdf (2.741Mb)
      Date
      2013-07-29
      Author
      Qian, Shifeng
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      In eukaryotic organisms, polyubiquitination is the modification of a protein with polymerized ubiquitin (Ub) chain. This process is well known for its function in targeting proteins for degradation by the 26S proteasome. However, a polyUb chain assembled through the lysine 63 residue of the Ub moiety (Lys63-linked polyubiquitination) has been shown to play a signaling role rather than targeting proteins for degradation. In plants, the functions of Lys63-linked polyubiquitination are currently not well understood. Ub-protein ligase (E3) catalyzes the last step in the ubiquitination reactions, and to a large extent it also determines the substrate specificity of protein ubiquitination. In order to study the roles of Lys63-linked polyubiquitination in plants, two E3s of Arabidopsis thaliana, proteins encoded by AtCHIP and At1g74370 (tentatively named E3-A1), were chosen for functional studies, since they interacted with AtUbc13A protein. Sequence analysis showed that AtCHIP is the only member in the family. A T-DNA insertion mutant line (Atchip-1) was obtained to study the AtCHIP gene knock-out effect. The mutant line was grown in normal conditions and further tested in a variety of conditions: hormonal treatments, osmotic stress, seed deterioration, high temperature stress, high-intensity light stress, oxidative stress and DNA damaging stress. However, no clear difference was observed between the mutant and wild type plants based on the several parameters measured. Sequence analysis of E3-A1 indicated two closely related proteins, tentatively named E3-A2 and E3-A3. As E3-A1 and E3-A2 appeared to share more sequence similarity, RNA interference (RNAi) transformants, with the level of transcripts for either of the two E3-A genes reduced by over 90% were generated. Selected RNAi mutant lines for E3-A1 and E3-A2 were crossed with each other, and double RNAi mutants were obtained. However, no distinct phenotype was detected under normal, high-sucrose or hormonal conditions for either single or double RNAi lines. Although various assays did not reveal a significant phenotype in the mutants in this study, the materials generated and the assays used will benefit a wider range of phenotypic survey in the future.
      Degree
      Master of Science (M.Sc.)
      Department
      Biochemistry
      Program
      Biochemistry
      Supervisor
      Wang, Hong; Xiao, Wei
      Committee
      Moore, Stanley A.; Loewen, Michele C.; Roesler, William J.
      Copyright Date
      February 2012
      URI
      http://hdl.handle.net/10388/ETD-2012-02-364
      Subject
      Ubiquitin
      ligase
      Ubc13
      lysine 63
      Arabidopsis thaliana
      AtCHIP
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy