University of SaskatchewanHARVEST
  • Login
  • Submit Your Research
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Formation of Electrostatic Complexes within Admixtures of Lentil Protein Isolates and Anionic Polysaccharides (κ-Carrageenan, De-acyl Gellan Gum and Gum Arabic)

      Thumbnail
      View/Open
      ARYEE-THESIS.pdf (1.558Mb)
      Date
      2012-09-06
      Author
      Aryee, Felix
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Proteins from plant sources are generally less soluble and have poorer functionality compared to animal proteins. The overall goal of this thesis was to better understand mechanisms associated with the formation of electrostatic complexes involving mixed systems of lentil protein isolates (LPI) and three different anionic polysaccharides (gum Arabic (GA), κ-carrageenan (κ-CG) and de-acyl gellan gum (GG)). A better understanding of mixed systems should lead to the development of formulated ingredients for targeted applications. Findings also may lead to enhanced utilization of lentil proteins as food and/or biomaterial ingredients with improved functionality over the protein alone. Maximum complexation occurred in the 1:1 LPI:GA mixed system (total biopolymer concentration (Cp) = 0.05%, w/w) at pH 3.50 with complexation following two pH-dependent structure forming events associated with the formation of soluble (pHc) and insoluble (pH1) complexes at pH 5.87 and 3.62, respectively. The addition of GA resulted in a shift of the LPI isoelectric point (pH 4.70) to a lower pH (3.17). The addition of sodium chloride (NaCl) disrupted coacervation, whereas the addition of urea caused a drop in the magnitude of the observed maximum optical density (O.D.). Increasing the temperature to 60°C resulted in a shift in turbidity curves towards more acidic pH and a decrease in maximum O.D. relative to the control (21-23°C). The addition of GG or κ-CG to LPI resulted in a suppression of LPI aggregation by electrostatic repulsion with a shift in net neutrality of the formed complexes to a lower pH (4.36) compared to LPI alone (pH 4.70) as measured by electrophoretic mobility of a 15:1 LPI:GG/κ-CG mixed system (Cp = 0.05%, w/w). The addition of salts resulted in disruption of formed LPI:GG/κ-CG complexes, and no polysaccharide-ion specific sensitivities were evident (i.e., Ca2+ to GG or K+ to κ-CG). Complexation was primarily driven by electrostatic attractive forces with secondary stabilization by hydrogen bonding. Hydrophobic interactions were thought to play a role in the stabilization of LPI-LPI aggregates. Removal of the lentil hull had a minor effect on complexation. Initial interactions occurred slightly above the pI of the LPI where biopolymers carried net negative charges with polysaccharide chains interacting with positive patches on the protein’s surface.
      Degree
      Master of Science (M.Sc.)
      Department
      Food and Bioproduct Sciences
      Program
      Food Science
      Supervisor
      Nickerson, Michael T.
      Committee
      Gray, Gordon; Tyler, Rodert; Wanasundara, Janitha; Low, Nicholas
      Copyright Date
      August 2012
      URI
      http://hdl.handle.net/10388/ETD-2012-08-618
      Subject
      Lentil protein isolates
      κ-Carrageenan
      de-acyl gellan gum
      gum Arabic
      complex coacervation
      isoelectric point
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy