University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Processing strategies for low-salt, low-fat bologna

      Thumbnail
      View/Open
      EDROSOLAM-THESIS.pdf (1.311Mb)
      Date
      2013-03-04
      Author
      Edrosolam, Marilyn
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Two studies on potential approaches for processing low-salt, low-fat (LSLF) bologna were completed. In study 1, the effects of three factors, namely salt type (sea salt vs. regular NaCl), NaCl concentration (0.75%, 1.00%, 1.25% and 2.00%) and holding of stuffed batter before cooking (cooked immediately (CI) vs. delayed cooking (DC)), on the quality of LSLF bologna were investigated. There was no difference between salt type for most of the parameters measured. The holding factor significantly improved the water holding capacity (WHC) and texture of bologna samples containing 0.75% NaCl, as shown by lower (p<0.05) expressible moisture. However, holding factor did not affect WHC and instrumental texture of samples with 1.00%, 1.25% or 2.00% NaCl. A NaCl level by hold effect (p<0.05) was observed for texture profile analysis (TPA) in which there was significant improvement in the texture of samples containing 0.75% NaCl that were subjected to DC, but no effect at other NaCl levels. Panelists were able to detect the positive effect (p<0.05) of DC on the texture of samples with 0.75% or 1.00% NaCl. This study showed that DC is effective in improving the texture of bologna samples with extremely low NaCl (0.75%) content. The biggest challenge in this first study was the difficult sample handling experienced during slicing. Since bologna is commonly sold as thin slices, the bologna must be firm enough for ease of slicing. The second study focused on improving bologna firmness by the addition of microbial transglutaminase (MTG), known for its functionality as a protein cross-linker, and of flaxseed meal (FSM), known for its excellent water holding capacity. The physico-chemical and sensory characteristics of 12 treatment combinations (0, 0.15% and 0.30% MTG; 0, 0.5%, 1.0% and 1.5% FSM) were determined. In general, results showed that MTG significantly improved the textural quality of bologna, but resulted in a higher purge loss during storage of vacuum packaged slices. On the other hand, FSM significantly reduced the expressible moisture content and purge loss of the product. In terms of product colour, MTG had no effect but FSM when added to the formulation at level as low as 0.5%, affected the colour as determined by both instrumental and sensory evaluation. The overall results of the project indicated that texture in LSLF bologna is not a major issue, since processing conditions and combinations of ingredients can be manipulated to improve texture. The biggest challenge, however, is in the area of flavour – improving the flavour of low-salt processed meats warrants further research.
      Degree
      Master of Science (M.Sc.)
      Department
      Food and Bioproduct Sciences
      Program
      Food Science
      Supervisor
      Shand, Phyllis P.
      Committee
      Arganosa, Gene; Korber, Darren; Tyler, Robert; Penner, Greg
      Copyright Date
      January 2013
      URI
      http://hdl.handle.net/10388/ETD-2013-01-880
      Subject
      low-salt, low-fat, sea salt, ionic strength, delayed cooking, microbia translutaminase, flaxseed meal
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy