University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      DEVELOPMENT OF SURFACE SENSITIVITY IN SCANNING X-RAY MICROSCOPY AND NEXAFS SPECTROSCOPY OF ORGANOSULPHUR COMPOUNDS

      Thumbnail
      View/Open
      BEHYAN-DISSERTATION.pdf (14.80Mb)
      Date
      2014-06-20
      Author
      Behyan, Shirin
      Type
      Thesis
      Degree Level
      Doctoral
      Metadata
      Show full item record
      Abstract
      In this thesis, two objectives related to Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy have been studied. The first objective was to develop surface sensitivity in Scanning Transmission X-ray Microscopy (STXM) at the Canadian Light Source (CLS) and the Advanced Light Source (ALS). The second objective was to study sulphur 1s NEXAFS spectra of organosulphur compounds relevant to petroleum by experimental and computational methods. Towards the first objective, Total Electron Yield (TEY) detection has been implemented in a STXM microscope, by conventional sample current and single electron counting detection modes. This provides improved surface-sensitive detection, simultaneous with existing bulk-sensitive transmission detection in the STXM microscopes. Both approaches provide improved surface sensitive imaging and spectroscopy, although channeltron-based detection is superior. TEY-STXM provides surface sensitive imaging of ultrathin films such as phase-separated Langmuir-Blodgett monolayer films, phase separated polymer thin films, as well as differentiation of surface and bulk oxides of patterned metal thin films. The challenge for TEY-STXM measurements is the poor vacuum environment in the STXM chamber at the CLS, which greatly impacts the function of the channeltron as well as the rate of the photodeposition. Although the effect of photodeposition can be minimal in bulk spectroscopy of organic samples, it is a challenge in spectroscopy of organic thin films, where the photodeposits can dominate the weak signal originating from the surface. Chapter 4 of this thesis discusses the details of this study along with the challenges encountered in the development of this new TEY-STXM technique. The second goal of my research was the detailed study of sulphur 1s NEXAFS spectra of organosulphur compounds by experimental and computational methods to obtain a complete database of sulphur 1s NEXAFS spectra. The speciation and quantification of sulphur compounds is of great interest in different areas such as fossil fuel studies, biology, geology, and archaeology. Sulphur 1s NEXAFS spectroscopy can be used for speciation and quantification of these compounds. For this purpose a firm understanding of NEXAFS spectra of sulphur compounds is required. Therefore, the sulphur 1s NEXAFS spectra of different sulphur functionalities have been studied including thiols, thioethers, disulphides, sulfoxides, sulfones, and thiophenic compounds in gas and condensed phases. These highly resolved spectra have been further analyzed with the aid of ab initio calculations. The highly resolved experimental spectra showed fine features predicted by calculations. The combination of experiment and calculation has been used to improve assignment of spectroscopic features relevant for the speciation and quantification of sulphur compounds.
      Degree
      Doctor of Philosophy (Ph.D.)
      Department
      Chemistry
      Program
      Chemistry
      Supervisor
      Urquhart, Stephen G.
      Committee
      Reid, Steve; Grosvenor, Andrew; Peak, Derek; Neville, John J.
      Copyright Date
      April 2013
      URI
      http://hdl.handle.net/10388/ETD-2013-04-1041
      Subject
      NEXAFS
      STXM
      TEY
      TEY-STXM
      FLY
      TIY
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      The University of Saskatchewan's main campus is situated on Treaty 6 Territory and the Homeland of the Métis.

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy