University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Tool Condition Monitoring and Replacement for Tubesheet Drilling

      Thumbnail
      View/Open
      GRIFFIN-THESIS.pdf (2.849Mb)
      Date
      2013-10-01
      Author
      Griffin, Ryan
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Tool Condition Monitoring (TCM) methods have shown significant potential to automatically detect worn tools without intervention in the machining process, thus decreasing machine downtime and improving reliability and part quality. Previous research on TCM systems have used a wide variety of time-domain and frequency-domain features extracted from cutting force related parameters as well as mechanical and acoustical vibrations to infer the wear state of tools. This project concerns the process of drilling thousands of tight-tolerance holes on tubesheets and baffles of heat exchangers using large diameter indexable insert drills on a horizontal boring machine. To address the issues involved in the process, the aim of this research is to develop a non-intrusive, indirect, online TCM system on the horizontal boring machine to monitor the drill wear and hole quality while drilling. The specific objectives are to establish an indirect TCM system for the drilling process, to develop models to predict tool wear and the machining accuracy of the drilled holes, and to develop an optimum tool replacement strategy. The TCM system developed used two cutting-force related signals on the horizontal boring machine, namely the spindle motor current and the axial feed motor current. Features extracted from these data streams, as well as the machining parameters, the cutting speed and the feed rate, and the number of holes drilled with the current inserts, are the inputs to a series of models to predict the tool wear state and the hole diameter. The first model is an autoregressive model that allows the prediction of the extracted features for the next hole before it is drilled. As each hole is drilled, this model is updated with the most recent data to improve the accuracy of the prediction. The predicted values for the features are then used as inputs to the second and third models which are surface response models, one to estimate the tool wear state and one to estimate the hole diameter. A tool replacement strategy based on applying limits to the predicted hole diameter was also developed. Adjusting these limits allows the strategy to be tuned for either hole accuracy or tool life depending on the requirements of a specific application. Tuning the replacement strategy for tool life resulted in a significant 44% increase in tool life and a non-trivial reduction in machine down time due to fewer tool changes while holding a hole diameter tolerance of ±0.1mm. The TCM system ensured that not a single over tolerance hole would have been drilled which is critically important since over tolerance holes can result in a scrapped workpiece. The proposed 3-model TCM system shows promise in being able to significantly reduce the risk of drilling out of tolerance holes while at the same time increasing tool life and correspondingly decreasing tool change time. The models are able to accurately predict the insert flank wear and as well as the actual hole diameter within acceptable error. The TCM system could be implemented in an industrial settingwith minimal revision and since it is an indirect system there would be no intrusion into the manufacturing operation. One limitation of the TCM system as proposed is that it is only capable of detecting gradual tool wear and not catastrophic tool failure, a limitation that was known from the outset but was not investigated as it was beyond the scope of this project. The proposed TCM system would allow the integration of additional functionality to instantaneously detect catastrophic tool failure. Finally, for use in a production environment, the developed models need to be implemented on a standalone device that requires essentially no operator input to monitor continuous drilling operations for tubesheet and baffle applications. This implementation could include automatic detection of the machining parameters using frequency analysis of the motor signals.
      Degree
      Master of Science (M.Sc.)
      Department
      Mechanical Engineering
      Program
      Mechanical Engineering
      Supervisor
      Chen, Daniel
      Committee
      Bui, Francis; Burton, Richard
      Copyright Date
      September 2013
      URI
      http://hdl.handle.net/10388/ETD-2013-09-1240
      Subject
      tool condition monitoring
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      The University of Saskatchewan's main campus is situated on Treaty 6 Territory and the Homeland of the Métis.

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy