University of SaskatchewanHARVEST
  • Login
  • Submit Your Research
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      ADVANCES IN IN-SITU SPECTROELECTROCHEMICAL FOURIER TRANSFORM INFRARED SPECTROSCOPY

      Thumbnail
      View/Open
      ROSENDAHL-DISSERTATION.pdf (2.172Mb)
      Date
      2013-10-22
      Author
      Rosendahl, Scott
      Type
      Thesis
      Degree Level
      Doctoral
      Metadata
      Show full item record
      Abstract
      The level of information provided by electrochemical measurements can be substantial as evident by the use of electrochemistry in varied disciplines spanning from materials research to cellular biochemistry. However, electrochemistry on its own does not provide direct information concerning redox induced changes in molecular structure. This information can only be elucidated by coupling spectroscopic and/or separation techniques with traditional electrochemical methodologies. In principle, infrared (IR) spectroelectrochemistry (SEC) is ideal for such studies but in practice coupling IR spectroscopy and electrochemistry are often experimentally incompatible. Since the inception of in-situ IR SEC techniques in the 1980’s, two competing methodologies (using either external- or internal- IR reflection geometries), were developed to deal with the two major challenges associated with IR SEC (strong infrared absorption of the electrolytes and weak analytical signals). The primary focus of this thesis is the successful advancement of IR SEC techniques through the implementation of synchrotron infrared radiation with ultramicroelectrodes (UMEs; electrode diameters < 25 µm) to study spectroelectrochemical processes on the microsecond time scale. Several examples using Surface Enhanced Infrared Absorption Spectroscopy (SEIRAS) are presented including the adsorption of dimethylaminopyridine (DMAP) on gold substrates and the proton-coupled electron-transfer (PCET) kinetics of electrochemically-active 1,4-benzoquinone terminated self-assembled monolayers (SAMs). These studies highlight the benefits of coupling electrochemistry and infrared spectroscopy. For instance, in-situ spectroscopic evidence shows that small amounts of DMAP’s conjugate acid (DMAPH+) adsorb on gold electrodes in acidic electrolytes and at negative potentials. This result was not forthcoming from previous electrochemical measurements and was only realized through in-situ SEIRAS. Finally, the largest contribution in advancing in-situ IR SEC methodologies was through the development of utilizing synchrotron infrared radiation on UMEs to study fast electrochemical processes. This work was technically very challenging and emphasized the interfacing of an electrochemical cell containing an UME with fast infrared data acquisition techniques (i.e. rapid scan and step-scan interferometry). The use of a prototypical electrochemical system, i.e. the mass-transport controlled reduction of ferricyanide, indicate that at short times the spectroscopic signal closely matches the electrochemical signal but at long time scales it deviates due to edge effects associated with the diffusion environment of the UME.
      Degree
      Doctor of Philosophy (Ph.D.)
      Department
      Chemistry
      Program
      Chemistry
      Supervisor
      Burgess, Ian J.
      Committee
      Martin, Michael; Mueller, Jens; Chapman, Dean; Bowles, Richard; Baranski, Andrzej
      Copyright Date
      October 2013
      URI
      http://hdl.handle.net/10388/ETD-2013-10-1257
      Subject
      in-situ spectroelectrochemistry
      synchrotron infrared radiation
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy