Nanopore Sensing Of Peptides And Proteins

View/ Open
Date
2013-11-28Author
Krasniqi, Besnik
Type
ThesisDegree Level
DoctoralMetadata
Show full item recordAbstract
In recent years the application of single-molecule techniques to probe biomolecules and intermolecular interactions at single-molecule resolution has expanded rapidly. Here, I investigate a series of peptides and proteins in an attempt to gain a better understanding of nanopore sensing as a single-molecule technique.
The analysis of retro, inversed, and retro-inversed isomers of glucagon and α-helical Fmoc-D2A10K2 peptide showed that nanopore sensing utilizing a wild-type α-hemolysin pore can distinguish between all four isomers while circular dichroism can only distinguish between chiral isomers, but not between directional isomers.
The investigation of a series of proteins of different chemical and physical properties revealed important information about nanopore analysis of proteins. Contrary to some reports in the literature, all proteins analysed here induced large blockade events. The frequency of total events and the proportion of large blockade events were significantly reduced in tris(hydroxymethyl)aminomethane or 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid buffers and were only restored by the addition of ethylenediaminetetraacetic acid or the use of phosphate buffer, both of which can sequester metal ions. Furthermore, the results obtained with the proteins in the presence of ligands demonstrated that transient or partial unfolding of proteins can be detected by nanopore analysis confirming the usefulness of this technique for conformational studies or for protein/ligand interactions. Interestingly, while the blockade current histograms were different for each protein there was no obvious correlation between the properties of the proteins and the blockade current histograms.
In an attempt to identify whether the large blockade events were translocation or intercalation, both an indirect and a direct approach were taken. The indirect approach which relies on the effect of voltage on the interaction of the molecule with the pore provided no conclusive answer to the question of protein translocation through the α-hemolysin pore. In contrast, the direct approach in which ribonuclease A is added to the cis side of the pore and then the trans side is tested for enzyme activity showed that ribonuclease A doesn't translocate through the α-hemolysin pore.
Degree
Doctor of Philosophy (Ph.D.)Department
BiochemistryProgram
BiochemistryCommittee
Lee, Jeremy S.; Moore, Stanley; Howard, Peter; Napper, ScottCopyright Date
November 2013Subject
nanopore
nanopore sensing
solid-state pores
alpha-hemolysin
isomers
zeta potential
metal ion binding
protein ligand interactions
Ribonuclease A