University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Proline catalyzed enantioselective retro-aldol reaction

      Thumbnail
      View/Open
      CHENG-THESIS.pdf (3.243Mb)
      Date
      2015-05-14
      Author
      Cheng, Muxi
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      In the Ward Group, stereoselective aldol reactions of thiopyran derived templates play an important role in polypropionate natural product syntheses. Central to this approach is the diastereo- and enantioselective synthesis of all possible aldol adducts 3 arising from tetrahydro-4H-thiopyran-4-one (1) and 1,4-dioxa-8-thiaspiro[4.5] decane-6- carboxaldehyde (2). There are four possible diastereomers of 3 indicated by the relative configurations at positions 3 and 1’ (syn or anti) and positions 1’ and 6’ (syn or anti). Up to date, the asymmetric aldol reaction of 1 with 2 catalyzed by L-proline or its tetrazole analogue 12 provides efficient access to 3,1’-anti-1’,6’-syn-3 (3-AS) without need for chromatography (>40 g scale; 75% yield, >98% ee) and 3,1’-syn-1’,6’-syn-3(3-SS) (via isomerization of 3-AS; >75% yield, 2 cycles); however, the preparation of enantiopure 3,1’-anti-1’,6’-anti-3 (3-AA) and 3,1’-anti-1’,6’-syn-3 (3-SA) still requires the use of enantiopure aldehyde 2 in a diastereoselective synthesis. Without a simple and scalable route, access to enantioenriched iterative aldol adducts and polypropionate natural products that are based on 3-AA and 3-SA skeletons are hindered. It was observed that conducting the asymmetric aldol synthesis of 3-AS on large scale gave enantioenriched 3-AA as a very minor product. This observation triggered the hypothesis of using L-proline to resolve racemic 3-AA via a retro-aldol reaction.In this thesis, the development, optimization, and application of an unprecedented L-proline catalyzed enantioselective retro-aldol reaction is described. Interesting mechanistic insights were uncovered. An unexpected isomerization process between 3-AA and 3-SA occurs in parallel with the retro-aldol process. The method was demonstrated to be a robust, flexible, and readily scalable process to access highly enantioenriched 3-AA (ee > 95%) and 3-SA (ee > 95%). To the best of our knowledge, this reaction represents the only reported enantioselective retro-aldol reaction catalyzed by L-proline.
      Degree
      Master of Science (M.Sc.)
      Department
      Chemistry
      Program
      Chemistry
      Supervisor
      Ward, Dale E.
      Committee
      Gravel, Michel; Scott, Robert W.
      Copyright Date
      December 2013
      URI
      http://hdl.handle.net/10388/ETD-2013-12-1320
      Subject
      L-proline
      enantioselective
      retro-aldol
      asymmetric catalysis
      polypropionate
      aldol
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      The University of Saskatchewan's main campus is situated on Treaty 6 Territory and the Homeland of the Métis.

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy