Show simple item record

dc.contributor.advisorPenner, Gregory B.en_US
dc.creatorSchurmann, Brittneyen_US
dc.date.accessioned2014-01-21T12:00:13Z
dc.date.available2014-01-21T12:00:13Z
dc.date.created2013-12en_US
dc.date.issued2014-01-20en_US
dc.date.submittedDecember 2013en_US
dc.identifier.urihttp://hdl.handle.net/10388/ETD-2013-12-1381en_US
dc.description.abstractShort chain fatty acids (SCFA) synthesized in the rumen from carbohydrate fermentation are an essential energy source for ruminants. Current literature supports that SCFA are absorbed across the rumen epithelium via passive diffusion or protein-mediated transport, however, the rate and degree to which these pathways adapt to a change in diet fermentability is unknown. Furthermore, Na+ flux is partially determined by SCFA absorption, and thus is a key indicator of functional changes in the rumen epithelium. The objectives of this study were to determine the time required for a change in SCFA and Na+ absorption across the bovine rumen epithelium and to evaluate the rate and degree to which absorption pathways adapt to an increase in diet fermentability relative to changes in surface area. Twenty-five weaned Holstein steer calves were blocked by body weight and randomly assigned to either the control diet (CON; 91.5% hay and 8.5% vitamin/mineral supplement) or a moderately fermentable diet (50% hay; 41.5% barley grain, and 8.5% vitamin/mineral supplement) fed for 3 (G3), 7 (G7), 14 (G14), or 21 d (G21). All calves were fed at 2.25% BW at 0800 h. Reticular pH was recorded every 5 min for 48 h prior to killing (1000 h). Ruminal tissue was collected for Ussing chamber, barrier function, surface area measurements, and gene expression. Net 22Na+ flux (JNET-Na; 80 kBq/15 mL), the rate and pathway of mucosal to serosal 3H-acetate (JMS-acetate; 37 kBq/15 mL) and 14C-butyrate (JMS-butyrate; 74 kBq/15 mL) flux, and serosal to mucosal flux of 3H-mannitol (JSM-mannitol; 74 KBq/15 mL) and tissue conductance were measured. Half of the chambers assigned to measure JMS-acetate and JMS-butyrate were further assigned to 1 of 2 acetate and butyrate concentration treatments: 10 mM (Low) and 50 mM (High). Furthermore, JSM-mannitol flux was also measured during an acidotic and hyperosmotic challenge (CHAL) and recovery (REC) to measure barrier function of ruminal tissue. Mean reticular pH, which was positively correlated with ruminal pH (R2 = 0.5477), decreased from 6.90 for CON to 6.59 for G7 then increased. Net Na+ flux increased 125% within 7 d. Total JMS-acetate and JMS-butyrate increased from CON to G21, where passive diffusion was the primary SCFA absorption pathway. Total JMS-acetate and JMS-butyrate were greater when incubated in High vs. Low. Effective surface area of the ruminal epithelium was not affected by dietary treatment. Increased JSM-mannitol, tissue conductance, and increased expression of IL-1β and TLR2 (tendencies) with increased days fed the moderate grain diet indicated reduced rumen epithelium barrier function. Furthermore, the CHAL treatment reduced barrier function, which was not reversible during REC. This study indicates that a moderate increase in diet fermentability increases rumen epithelium absorptive function in the absence of increased SA, but reduces barrier function. Data from this study also suggests that absorption and barrier function follow different timelines, posing a challenge for ruminant diet adaptation to moderately to highly fermentable diets.en_US
dc.language.isoengen_US
dc.subjectrumen epitheliumen_US
dc.subjectdietary adaptationen_US
dc.subjectshort chain fatty aciden_US
dc.subjection transporten_US
dc.subjectUssing chamberen_US
dc.titleFUNCTIONAL ADAPTATION OF THE RUMINAL EPITHELIUMen_US
thesis.degree.departmentAnimal and Poultry Scienceen_US
thesis.degree.disciplineAnimal Scienceen_US
thesis.degree.grantorUniversity of Saskatchewanen_US
thesis.degree.levelMastersen_US
thesis.degree.nameMaster of Science (M.Sc.)en_US
dc.type.materialtexten_US
dc.type.genreThesisen_US
dc.contributor.committeeMemberChristensen, Daviden_US
dc.contributor.committeeMemberMcKinnon, Johnen_US
dc.contributor.committeeMemberHendrick, Steveen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record