University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Effect and underlying mechanisms of cultivar mixtures on weed and disease suppression in field pea (Pisum sativum)

      Thumbnail
      View/Open
      SYROVY-THESIS.pdf (761.8Kb)
      Date
      2014-04-17
      Author
      Syrovy, Angelena
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Field pea is an important annual crop due to its contribution to soil fertility and other rotational benefits. However, weeds and ascochyta blight limit pea yield, particularly in organic systems. Leafed and semi-leafless pea types differ in lodging resistance, and may affect weeds and disease through differences in canopy light penetration and air flow. Mixtures of the two leaf types may improve weed and disease suppression and yield compared with monocultures of the same cultivars. To test this hypothesis, replicated field experiments were conducted under organic and conventional management in Saskatoon and Vonda, SK, in 2011 and 2012. Mixtures of a leafed and semi-leafless cultivar, CDC Sonata and CDC Dakota, were sown in ratios of 0:100, 25:75, 50:50, 75:25, and 100:0 leafed to semi-leafless pea, at target seeding rates of 88 and 132 plants m-2. Conventionally managed plots were inoculated with ascochyta blight-infested pea straw and received overhead irrigation to encourage disease. Mixtures of 50% or more semi-leafless pea adopted the greater lodging resistance and weed suppression of the semi-leafless cultivar. Mixtures comprised of 25% leafed and 75% semi-leafless pea increased both seed and biomass yield compared with either cultivar grown alone. Yield enhancement was attributed to the leafed cultivar, whose seed yield was 76% higher in mixture than expected based on monoculture yield. Ascochyta blight epidemics were of moderate severity, and leafed and semi-leafless monocultures reached 36 and 43% necrosis in 2011, and 33 and 38% necrosis in 2012, respectively. The disease reaction of mixtures fell between the two component cultivars. At disease onset in 2012, lower light interception and shorter moisture durations coincided with the lower ascochyta blight severity of leafed monocultures. In 2011 and the later phase of the 2012 epidemic, disease severity was negatively associated with vine length, and positively associated with number of nodes and tissue senescence. Despite the advantages of leafed and semi-leafless pea mixtures, the limited selection of leafed cultivars impedes adoption of this technique by growers. For pea breeders, developing mixtures of pea lines isogenic for leaf type may increase yield compared with single cultivars.  
      Degree
      Master of Science (M.Sc.)
      Department
      Plant Sciences
      Program
      Plant Science
      Supervisor
      Shirtliffe, Steven J.; Banniza, Sabine
      Committee
      Vandenberg, Albert; Kutcher, H. R.; Coulman, Bruce
      Copyright Date
      February 2014
      URI
      http://hdl.handle.net/10388/ETD-2014-02-1450
      Subject
      cultivar mixtures
      Pisum sativum L.
      leaf type
      weed competition
      ascochyta blight
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      The University of Saskatchewan's main campus is situated on Treaty 6 Territory and the Homeland of the Métis.

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy