Repository logo
 

Evaluation of Mitigative Techniques for Non-Contact Lap Splices in Concrete Block Construction

Date

2014-04-24

Journal Title

Journal ISSN

Volume Title

Publisher

ORCID

Type

Degree Level

Masters

Abstract

A previously completed study in the field of concrete block construction by Ahmed and Feldman (2012) indicated that, on average, the reinforcing bars in non-contact lap splices, where the lapped bars are located in adjacent cells, only develop 71% of the tensile resistance of spliced bars which are in contact. An experimental program was therefore initiated to design and evaluate remedial measures which can potentially increase the tensile resistance of non-contact lap splices to that of contact lap splice of the same lap length. Implementation of the proposed measures in various field situations was also analyzed. Six unique remedial splice details, along with standard contact and unaltered non-contact lap splices were evaluated and compared. The mitigative details included providing additional confinement, installing knock-out webs, placing splice reinforcement between the lapped bars, and combinations of these aforementioned details. Three replicates of each splice detail were constructed for a total of 24 wall splice specimens. Each wall splice specimen was reinforced with No. 15 Grade 400 deformed steel reinforcing bars with 200 mm lap splice lengths at located the midspan. The specimens were tested in a horizontal position under a monotonic, four-point loading geometry. Load and deflection data were collected throughout testing and were subsequently used in an iterative moment-curvature analysis to calculate the maximum tensile resistance of the spliced reinforcement. This was then used to compare the structural performance of each remedial splice detail to the standard contact and non-contact lap splices. The wall splice specimens which contained non-contact lap splices with knock-out webs, s-shaped, and transverse reinforcement in the splice region achieved similar tensile capacities as the wall splice specimens with standard contact lap splices. Industry professionals have indicated that the installation of the remedial measures evaluated in this study would not affect the constructability of masonry assemblages in field situations. The splice detail with knock-out webs confined within the lap splice length was determined to be the most viable procedure as it can be installed to increase the resistance of non-contact lap splices in almost all construction situations. This remedial procedure was able to improve the tensile resistance of the lapped reinforcement by 63% compared to the wall splice specimens with standard non-contact lap splices.

Description

Keywords

Bond, lap splices (contact & non-contact), concrete block construction, field implementation, knockout webs, transverse reinforcement

Citation

Degree

Master of Science (M.Sc.)

Department

Civil and Geological Engineering

Program

Civil Engineering

Citation

Part Of

item.page.relation.ispartofseries

DOI

item.page.identifier.pmid

item.page.identifier.pmcid