University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Treatment of Phenol in Water Using Microwave-assisted Advanced Oxidation Processes

      Thumbnail
      View/Open
      VERMA-THESIS.pdf (1.467Mb)
      Date
      2014-05-05
      Author
      verma, abha
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Phenol and its compounds are highly toxic even in low concentration, and have become the subject of intense research during the last two decades. Effluents from industries such as oil refining, paper milling, olive oil extraction, wood processing, coal gasification and textiles and resin manufacturing and agro-industrial wastes discharge phenols at levels much higher than the toxic levels set for this compound. Advanced Oxidation Processes (AOPs) such as UV, UV-TiO2, UV-H2O2, O3 and UV-O3 have become popular in recent years as efficient treatment methods for recalcitrant compounds like phenol. The effect of microwave (MW) and combined MW-UV treatment on degradation of phenol was studied in aqueous solution in the presence and absence of TiO2 under controlled temperature conditions. It was found that the efficiency of MW and MW-UV processes for the degradation of phenol was less than 10% after 120 minutes of treatment. However, the efficiencies of MW-TiO2 (hydrothermal) and MW-TiO2 (sol-gel) were slightly more than those of the above processes at 12 to 15% after 120 minutes, which might be due to adsorption of the phenol on the surface of TiO2 particles. It also was observed that MW-UV-TiO2 was superior to any other process studied for the degradation of phenol. At natural pH, the degradation efficiency of MW-UV-TiO2 (HT) on 1500 ppm of phenol in water was 23%, and for MW-UV-TiO2 (SG) it was 20%. Hence, it can be concluded that the catalyst (TiO2) prepared by the hydrothermal (HT) method had better catalytic activity than TiO2 prepared by the sol-gel (SG) method, which might be due to its structural and optical characteristics. Of the two developed reactors which are MW and a combined MW-UV reactor, MW-UV combined with TiO2 could be used for most successful degradation of phenol.
      Degree
      Master of Science (M.Sc.)
      Department
      Chemical and Biological Engineering
      Program
      Biological Engineering
      Supervisor
      Meda, Venkatesh; Dalai, ajay
      Committee
      Lope, Tabil; Tyler, Robert; Baik, Oon-Doo; Soltan, Jafar; chang, won
      Copyright Date
      April 2014
      URI
      http://hdl.handle.net/10388/ETD-2014-04-1511
      Subject
      Phenol, Microwave, Dielectric Properties,
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      The University of Saskatchewan's main campus is situated on Treaty 6 Territory and the Homeland of the Métis.

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy