Show simple item record

dc.contributor.advisorPeng, Ding-Yuen_US
dc.creatorUlaganathan, Manjunathanen_US
dc.date.accessioned2014-05-21T12:00:13Z
dc.date.available2014-05-21T12:00:13Z
dc.date.created2014-05en_US
dc.date.issued2014-05-20en_US
dc.date.submittedMay 2014en_US
dc.identifier.urihttp://hdl.handle.net/10388/ETD-2014-05-1540en_US
dc.description.abstractThe study of excess thermodynamic properties of liquid mixtures is very important for designing the thermal separation processes, developing solution theory models and to have a better understanding of molecular structure and interactions involved in the fluid mixtures. In particular, heat of mixing or excess molar enthalpy data of binary and ternary fluid mixtures have great industrial and theoretical significance. In this connection, the experimental excess molar enthalpies for seventeen binary and nine ternary systems involving hydrocarbons, ethers and alcohol have been measured at 298.15K and atmospheric conditions for a wide range of composition by means of a flow microcalorimeter (LKB 10700-1). The binary experimental excess molar enthalpy values are correlated by means of the Redlich-Kister polynomial equations and the Liebermann - Fried solution theory model. The ternary excess molar enthalpy values are represented by means of the Tsao-Smith equation with an added ternary term and the Liebermann-Fried model was used to predict ternary excess molar enthalpy values. The Liebermann-Fried solution theory model was able to closely represent the experimental excess enthalpy data for most of the binary and ternary systems with reasonable accuracy. The correlated and predicted excess molar enthalpy data for the ternary systems are plotted in Roozeboom diagramsen_US
dc.language.isoengen_US
dc.subjectExcess molar enthalpyen_US
dc.subjectFlow Microcalorimeteren_US
dc.subjectLiebermann - Fried modelen_US
dc.subjectHydrocarbonsen_US
dc.subjectEthersen_US
dc.titleMeasurement of Excess Molar Enthalpies of Binary and Ternary Systems Involving Hydrocarbons and Ethersen_US
thesis.degree.departmentChemical and Biological Engineeringen_US
thesis.degree.disciplineChemical Engineeringen_US
thesis.degree.grantorUniversity of Saskatchewanen_US
thesis.degree.levelMastersen_US
thesis.degree.nameMaster of Science (M.Sc.)en_US
dc.type.materialtexten_US
dc.type.genreThesisen_US
dc.contributor.committeeMemberPhoenix, Aaronen_US
dc.contributor.committeeMemberMeda, Venkateshen_US
dc.contributor.committeeMemberRangacharyulu, Charyen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record