University of SaskatchewanHARVEST
  • Login
  • Submit Your Research
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Responses of selected chickpea cultivars to imidazolinone herbicide

      Thumbnail
      View/Open
      JEFFERIES-THESIS.pdf (1.464Mb)
      Date
      2014-07-22
      Author
      Jefferies, Laura
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Limitations to broadleaf weed management options in chickpea present obstacles for stable production. Even with low weed incidence, chickpea yield can be severely affected, creating need for an integrated weed management system. Due to zero-tillage commonly practiced in Saskatchewan, there is heavy reliance on herbicides. The chickpea breeding program at the Crop Development Centre, University of Saskatchewan, has developed chickpea cultivars with resistance to imidazolinone (IMI) class of herbicides. The objectives of this study were: (i) to examine the reaction of four chickpea cultivars – CDC Luna, CDC Corinne, CDC Alma, and CDC Cory - to imazamox, imazethapyr, and a combination of imazamox and imazethapyr under field conditions; and (ii) to examine cultivar responses to IMI applications at different growth stages: 2-4 node, 5-8 node, and 9-12 node stage. Field experiments were conducted over five site years in Saskatchewan, Canada in 2012 and 2013. For each experiment, visual injury ratings, plant height, node, and internode length were recorded at 7, 14, 21, and 28 days after each herbicide application (DAA). Days to flowering (DTF), days to maturity (DTM), number of primary branches, pods per plant, harvest index, and seed yield were additional measurements for elucidating physiological responses. Conventional cultivars, CDC Luna and CDC Corinne, had moderate to severe visual injury scores compared to resistant cultivars, CDC Alma and CDC Cory, with minimal to no visual injury after IMI treatment. Height stopped increasing and node development slowed for conventional cultivars treated with IMI herbicides. This susceptibility to IMI herbicides was also recognized with a delay in the DTF and DTM. Despite significant negative response, CDC Luna and CDC Corinne were able to recover throughout the field season, resulting in no yield loss from IMI treatments. Resistant cultivars CDC Alma and CDC Cory demonstrated no negative response from IMI herbicide application compared with the untreated controls. Growth, in terms of height and node development, DTF, DTM, and yield were not significantly different between IMI treated and control treatments. Resistant cultivars tolerated IMI herbicide at all growth stages tested. These results demonstrate potential for use of IMI herbicides in chickpea, expanding the currently limited options for broadleaf weed control.
      Degree
      Master of Science (M.Sc.)
      Department
      Plant Sciences
      Program
      Plant Science
      Supervisor
      Tar'an, Bunyamin
      Committee
      Bai, Yuguang; Warkentin, Tom; Willenborg, Chris
      Copyright Date
      June 2014
      URI
      http://hdl.handle.net/10388/ETD-2014-06-1561
      Subject
      Chickpea
      Imidazolinones
      Broadleaf weed control
      Herbicide resistance
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy