Repository logo
 

A Novel Paradigm of Sensing: Multi-signals Acquisition with one sensor

Date

2014-07-09

Journal Title

Journal ISSN

Volume Title

Publisher

ORCID

Type

Degree Level

Masters

Abstract

Sensors with the capability of multi-signal acquisition at the “same” site and “same” time draw abundant attention throughout the academic society. However, designing of multi-signal sensors is a challenging process. The goal of the study is to explore the design theories and methodologies for multi-signal sensors with current device manufacturing technologies. To achieve this goal, this study strives to meet the following two objectives: (1) define general design principles for such sensors, and (2) develop demonstration prototypes to prove the effectiveness of the design principle. The study takes two signals acquisition as a vehicle without loss of generality. For Objective 1, this study proposes three general design principles for multi-signal sensors. The first design principle is to acquire multiple signals through a stem signal. The second principle is to design the structure so that one signal can be accurately inferred while another signal can be directly measured. The third principle is to design an integral structure that inherently acquires two signals. For objective 2, prototypes for the second and third principles were built to demonstrate the effectiveness of the design principles. Contributions of this study to the field of composite materials and sensor design include: (1) findings of the three design principles for multi-signal acquisition, (2) proof-of-concept construction/application of two prototype multi-signal devices (one for temperature and pressure, and the other for temperature and pH), and (3) discovery of the highly linear relationship between the temperature and electrical resistivity with a carbon nanotube and polymer composite within the temperature range from room temperature to approximately 70 Celsius degrees.

Description

Keywords

Multi-signal, Sensor, CNTs, Heat Transfer, pH

Citation

Degree

Master of Science (M.Sc.)

Department

Mechanical Engineering

Program

Mechanical Engineering

Advisor

Committee

Citation

Part Of

item.page.relation.ispartofseries

DOI

item.page.identifier.pmid

item.page.identifier.pmcid