University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Conditioning graphs: practical structures for inference in bayesian networks

      Thumbnail
      View/Open
      kev_thesis.pdf (1.056Mb)
      Date
      2007-01-03
      Author
      Grant, Kevin John
      Type
      Thesis
      Degree Level
      Doctoral
      Metadata
      Show full item record
      Abstract
      Probability is a useful tool for reasoning when faced with uncertainty. Bayesian networks offer a compact representation of a probabilistic problem, exploiting independence amongst variables that allows a factorization of the joint probability into much smaller local probability distributions.The standard approach to probabilistic inference in Bayesian networks is to compile the graph into a join­tree, and perform computation over this secondary structure. While join­trees are among the most time­efficient methods of inference in Bayesian networks, they are not always appropriate for certain applications. The memory requirements of join­tree can be prohibitively large. The algorithms for computing over join­trees are large and involved, making them difficult to port to other systems or be understood by general programmers without Bayesian network expertise. This thesis proposes a different method for probabilistic inference in Bayesian networks. We present a data structure called a conditioning graph, which is a run­time representation of Bayesian network inference. The structure mitigates many of the problems of join­tree inference. For example, conditioning graphs require much less space to store and compute over. The algorithm for calculating probabilities from a conditioning graph is small and basic, making it portable to virtually any architecture. And the details of Bayesian network inference are compiled away during the construction of the conditioning graph, leaving an intuitive structure that is easy to understand and implement without any Bayesian network expertise. In addition to the conditioning graph architecture, we present several improvements to the model, that maintain its small and simplistic style while reducing the runtime required for computing over it. We present two heuristics for choosing variable orderings that result in shallower elimination trees, reducing the overall complexity of computing over conditioning graphs. We also demonstrate several compile and runtime extensions to the algorithm, that can produce substantial speedup to the algorithm while adding a small space constant to the implementation. We also show how to cache intermediate values in conditioning graphs during probabilistic computation, that allows conditioning graphs to perform at the same speed as standard methods by avoiding duplicate computation, at the price of more memory. The methods presented also conform to the basic style of the original algorithm. We demonstrate a novel technique for reducing the amount of required memory for caching. We demonstrate empirically the compactness, portability, and ease of use of conditioning graphs. We also show that the optimizations of conditioning graphs allow competitive behaviour with standard methods in many circumstances, while still preserving its small and simple style. Finally, we show that the memory required under caching can be quite modest, meaning that conditioning graphs can be competitive with standard methods in terms of time, using a fraction of the memory.
      Degree
      Doctor of Philosophy (Ph.D.)
      Department
      Computer Science
      Program
      Computer Science
      Supervisor
      Horsch, Michael C.
      Committee
      Santos, Eugene Jr.; Neufeld, Eric; Keil, J. Mark; Grassmann, Winfried K.; Bickis, Mikelis G.
      Copyright Date
      January 2007
      URI
      http://hdl.handle.net/10388/etd-01152007-161104
      Subject
      Graphical Models
      Recursive Conditioning
      Bayesian Networks
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      The University of Saskatchewan's main campus is situated on Treaty 6 Territory and the Homeland of the Métis.

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy