Show simple item record

dc.contributor.advisorSpiteri, Raymond J.en_US
dc.contributor.advisorMuir, Paul H.en_US
dc.creatorBoisvert, Jason J.en_US
dc.date.accessioned2011-01-18T10:49:57Zen_US
dc.date.accessioned2013-01-04T04:24:14Z
dc.date.available2012-01-19T08:00:00Zen_US
dc.date.available2013-01-04T04:24:14Z
dc.date.created2010-12en_US
dc.date.issued2010-12en_US
dc.date.submittedDecember 2010en_US
dc.identifier.urihttp://hdl.handle.net/10388/etd-01182011-104957en_US
dc.description.abstractBoundary value problems (BVPs) are systems of ordinary differential equations (ODEs) with boundary conditions imposed at two or more distinct points. Such problems arise within mathematical models in a wide variety of applications. Numerically solving BVPs for ODEs generally requires the use of a series of complex numerical algorithms. Fortunately, when users are required to solve a BVP, they have a variety of BVP software packages from which to choose. However, all BVP software packages currently available implement a specific set of numerical algorithms and therefore function quite differently from each other. Users must often try multiple software packages on a BVP to find the one that solves their problem most effectively. This creates two problems for users. First, they must learn how to specify the BVP for each software package. Second, because each package solves a BVP with specific numerical algorithms, it becomes difficult to determine why one BVP package outperforms another. With that in mind, this thesis offers two contributions. First, this thesis describes the development of the BVP component to the fully featured problem-solving environment (PSE) for the numerical solution of ODEs called pythODE. This software allows users to select between multiple numerical algorithms to solve BVPs. As a consequence, they are able to determine the numerical algorithms that are effective at each step of the solution process. Users are also able to easily add new numerical algorithms to the PSE. The effect of adding a new algorithm can be measured by making use of an automated test suite. Second, the BVP component of pythODE is used to perform two research studies. In the first study, four known global-error estimation algorithms are compared in pythODE. These algorithms are based on the use of Richardson extrapolation, higher-order formulas, deferred corrections, and a conditioning constant. Through numerical experimentation, the algorithms based on higher-order formulas and deferred corrections are shown to be computationally faster than Richardson extrapolation while having similar accuracy. In the second study, pythODE is used to solve a newly developed one-dimensional model of the agglomerate in the catalyst layer of a proton exchange membrane fuel cell.en_US
dc.language.isoen_USen_US
dc.subjectproblem solving environmenten_US
dc.subjectnumerical solutionsen_US
dc.subjectboundary value problemsen_US
dc.subjectordinary differential equationsen_US
dc.titleA problem-solving environment for the numerical solution of boundary value problemsen_US
thesis.degree.departmentComputer Scienceen_US
thesis.degree.disciplineComputer Scienceen_US
thesis.degree.grantorUniversity of Saskatchewanen_US
thesis.degree.levelMastersen_US
thesis.degree.nameMaster of Science (M.Sc.)en_US
dc.type.materialtexten_US
dc.type.genreThesisen_US
dc.contributor.committeeMemberAscher, Urien_US
dc.contributor.committeeMemberStanley, Kevinen_US
dc.contributor.committeeMemberMakaroff, Dwighten_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record