University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      The numerical evaluation of multi-piece crankshafts

      Thumbnail
      View/Open
      King_Jeffrey_Allan_2008.pdf (66.01Mb)
      Date
      2008-12
      Author
      King, Jeffrey Allan
      Type
      Thesis
      Degree Level
      Doctoral
      Metadata
      Show full item record
      Abstract
      This work develops a methodology for the FEM simulation of a multi-piece crankshaft. Various simulation models that include press-fit joint contact conditions and complex meshing schemes are examined in order to accurately capture details of the stress fields present at the stress concentration area (labeled as the SCA) on the edge of the press-fit. The maximum stress components are demonstrated to be of limited values (non-singular) and Hertzian in nature. To obtain the stress convergence sufficiently small elements, which can be determined using a 2-D axisymmetric model, are required at the vicinity of the SCA. The same level of mesh refinement is then used for large 3-D FEM models of the crankshaft geometry, to study the resulting behavior of the press-fit joint for the dynamic operating loads. However, it may not always be possible or practical, as some limits on the mesh refinement have to be imposed to obtain a reasonable computational time to run such models. Less complex 'equivalent' symmetrical FEM models are investigated to determine if these models can provide a sufficient level of accuracy at an acceptable computational effort. Such models may be useful as practical design tools, producing data to speed up the decision making process. The simulation results are compared to some test data for the stress state monitored in real crankshafts under operating conditions. 'Intuitive' design sensitivities to various crankshaft parameters are examined as well. The numerical tools and engineering rules developed in the thesis may be applied to systematically improve the design by extending the joint's life and/or load carrying capability.
      Degree
      Doctor of Philosophy (Ph.D.)
      Department
      Mechanical Engineering
      Program
      Mechanical Engineering
      Committee
      Szyszkowski, Walerian
      Copyright Date
      December 2008
      URI
      http://hdl.handle.net/10388/etd-01192009-125633
      Subject
      sub-surface stress
      finite element method
      multi-piece crankshaft
      press-fit
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy