University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      A polymerase chain reaction and denaturing gradient gel electrophoresis procedure for analysis of arbuscular mycorrhizal fungi in soil

      Thumbnail
      View/Open
      Thesis.pdf (2.132Mb)
      Date
      2004-01-07
      Author
      Ma, Wai Kwong
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Arbuscular mycorrhizal fungi (AMF) are important components of agro-ecosystems and are especially significant for productive low-input agriculture. Traditional spore morphology-based identification of AMF in biodiversity studies is subjective and requires expertise and time. Researchers have used molecular techniques to investigate community composition of AMF in uncultivated, disturbed, or contaminated soils, but this approach to community analysis of AMF in agricultural soils has not been reported. In this study, a polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) procedure for the detection of fungal 18S ribosomal RNA gene was developed with reference cultures. Five AMF species were procured from the International Culture Collection of Arbuscular and Vesicular-Arbuscular Mycorrhizal Fungi (INVAM). These reference cultures were chosen because isolates of their species were putatively identified in a previous survey of farm field soils in Saskatchewan, Canada. A reference PCR-DGGE profile was generated using DNA extracted and amplified from the spores of these INVAM cultures. The method’s technical limitations were investigated. The optimized procedure’s effectiveness was tested by its application to soil samples from 38 farms. Bands from the PCR-DGGE profiles of these samples were excised for sequence analysis. The total number of species recovered was low in comparison to other AMF community surveys of temperate climate locations. The majority of the sequences recovered were Glomus species. Scutellospora calospora, a previously undetected AM fungus in Saskatchewan was found. A trend in AMF distribution in Saskatchewan was observed and it was relatable to their phylogenetic taxonomy. Though not without its drawbacks, this approach to community composition analysis of AMF was faster than conventional trap cultivation methods.
      Degree
      Master of Science (M.Sc.)
      Department
      Soil Science
      Program
      Soil Science
      Supervisor
      Germida, James J.
      Committee
      Walley, Frances L.; Buchanan, Fiona C.
      Copyright Date
      January 2004
      URI
      http://hdl.handle.net/10388/etd-01292004-111928
      Subject
      PCR
      AMF
      DGGE
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      The University of Saskatchewan's main campus is situated on Treaty 6 Territory and the Homeland of the Métis.

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy