University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      In-situ caged wood frog (Rana sylvatica) survival and development in wetlands formed from oil sands process-affected materials (OSPM)

      Thumbnail
      View/Open
      Hersikorn_MSc2009.pdf (869.1Kb)
      Date
      2009
      Author
      Hersikorn, Blair Donald
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Currently there are three companies producing bitumen from the Athabasca Oil Sands Region located near Fort McMurray, Alberta, Canada. Extraction of bitumen produces solid (sand) and liquid (water with suspended fine particles) tailings material, called oil sands process affected-materials (OSPM). These waste materials are stored on site due to a “zero discharge” policy and must be reclaimed when operations end. The OSPM is known to contain naphthenic acids (NAs) and polycyclic aromatic hydrocarbons (PAHs) and has high pH and salinity. A possible method of reclamation is the “wet landscape” approach, which involves using OSPM to form wetlands that would mimic natural wetland ecological functioning. This study investigated the effects of wetlands formed with OSPM on wood frog larvae (Rana sylvatica), using endpoints including survival, growth, time to metamorphosis, hormonal status, and detoxification enzyme induction [ethoxyresorufin-o-dealkylase (EROD) activity]. In-situ caging studies were completed in 2006 and 2007. Four wetlands were studied in 2006 and 14 wetlands were studied in 2007. The 2006 season saw a host of problems that were resolved for the 2007 season. In 2006, tadpole survival did not differ among reference wetlands and old OSPM-affected wetlands but there was 100% mortality of tadpoles in the young OSPM-affected sites that contain the highest concentration of toxic components. Results were similar in 2007, with tadpoles raised in young OSPM-affected wetlands having 41.5%, 62.6%, and 54.7% higher tadpole mortality than old OSPM-affected, young reference, and old reference wetlands, respectively. In 2007, tadpoles from young OSPM-affected sites had delayed metamorphosis (12 days longer than tadpoles from old reference wetlands and 18 days longer than tadpoles in old OSPM-affected wetlands). The thyroid hormone ratios of tadpoles in young OSPM-affected wetlands were between 25% and 42% lower than tadpoles in all other wetlands groups. The EROD activity of tadpoles in young OSPM-affected wetlands was an average 223% higher than those in old OSPM-affected wetlands, showing us that tadpoles were responding to higher levels of contaminants in young OSPM-affected wetlands. Size differences were only noted in 2007, most likely not as a result of exposure to OSPM, but due to differences in population density. The results of this study lead us to believe that toxicity due to OSPM decreases as wetlands get older and OSPM-affected wetlands could support native amphibian populations if they are allowed to mature. Since we considered wetlands to be old if they were seven years or older and the fact that old-OSPM wetlands showed effects on tadpoles similar to those of reference wetlands and showed much less toxicity than young OSPM-affected wetlands, we believe wetlands that are at least seven years old would sustain amphibian life.
      Degree
      Master of Science (M.Sc.)
      Department
      Toxicology
      Program
      Toxicology
      Supervisor
      Smits, Judit
      Committee
      Flood, Peter F.; Blakley, Barry R.; Wickstrom, Mark
      Copyright Date
      2009
      URI
      http://hdl.handle.net/10388/etd-03122009-143350
      Subject
      bioindicators
      oil sands
      metamorphosis
      amphibians
      toxicology
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      The University of Saskatchewan's main campus is situated on Treaty 6 Territory and the Homeland of the Métis.

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy