Repository logo
 

Direct Growth of Carbon Nanotubes on Inconel Sheets Using Hot Filament Chemical Vapor Deposition

Date

2009

Journal Title

Journal ISSN

Volume Title

Publisher

ORCID

Type

Degree Level

Masters

Abstract

Carbon nanotubes (CNTs) have great potential in many applications due to their unique structure and properties. However, there are still many unsolved problems hampering their real applications. This thesis focuses on three important issues limiting their applications, namely: (1) direct growth of CNTs without additional catalyst, (2) secondary growth of carbon nanotubes on primary CNT bed without using extra catalyst, (3) and CNT alignment mechanisms during the growth. The CNTs used in this thesis were prepared by hot filament chemical vapor deposition (CVD) reactor and characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometry (XRD), and Raman spectroscopy. Field electron emission (FEE) properties of the CNTs were also tested. Oxidation-reduction method was adopted in direct growth of CNTs on Inconel 600 plates and proved effective. The effect of oxidation temperature on the growth of CNTs was studied. It was found that the oxidation temperature had an influence on CNT height uniformity and FEE properties: the higher the treatment temperature, the more uniform the resultant CNTs, and the better the FEE properties of the resultant CNTs. The contribution of different oxides formed at different temperatures were investigated to explain the effect of oxidation temperature on the CNT height uniformity. Secondary CNTs were grown on primary ones by simply changing the carbon concentration. No additional catalyst was used during the whole deposition process. It was found that synthesizing primary CNTs at extremely low carbon concentration is key factor for the secondary growth without additional catalyst. The CNT sample grown with secondary nanotubes exhibited improved field emission properties. The effect of bias voltage on growth of vertically aligned carbon nanotubes was investigated. The CNTs grown at -500V shows the best alignment. At the early growth stage, simultaneous growth of randomly oriented and aligned carbon nanotubes was observed. This was consistent with the alignment mechanism involving stress that imposed on catalyst particles on tube tips. Through the observation of CNT growth on the scratched substrates, catalyst particle size was found as another determining factor in the alignment of CNTs. Big catalyst particles promoted aligned growth of CNTs.

Description

Keywords

Chemical vapor deposition, Inconel, Direct growth, Carbon nanotube

Citation

Degree

Master of Science (M.Sc.)

Department

Mechanical Engineering

Program

Mechanical Engineering

Citation

Part Of

item.page.relation.ispartofseries

DOI

item.page.identifier.pmid

item.page.identifier.pmcid