University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Molecular tools for the characterization of mycobacterium avium subspecies paratuberculosis

      Thumbnail
      View/Open
      Thesis140305.pdf (1.150Mb)
      Date
      2005-01-28
      Author
      Sibley, Jennifer Anne
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Several strain typing techniques are available to categorize Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) isolates into cattle, sheep, bison, and Intermediate groups. The majority of isolates studied were identified as members of the cattle associated group, regardless of sample host origin, suggesting that the cattle group of M. paratuberculosis isolates are very successful. This may be because host specificity is not critical for this group or the small differences required to demonstrate host specificity have not yet been found. A major limitation to the epidemiological study of M. paratuberculosis has been the difficulty associated with laboratory cultivation of this micro-organism. The new typing techniques described in this thesis do not require viable M. paratuberculosis bacteria and therefore open a door to novel typing practices. The new molecular techniques, single stranded conformation polymorphism (SSCP) analysis and satellite typing, were applied to M. paratuberculosis isolates (n=75) from a broad range of ruminant hosts and geographic locations. SSCP analysis and satellite typing were compared to currently accepted techniques (PCR-REA, RFLP, PFGE) for their ability to rapidly and reliably differentiate among M. paratuberculosis isolates. PCR-REA segregated isolates (n=75) into cattle (n=72), sheep (n=1) or bison (n=2) associated strain types. Two isolates from cattle in Canada were typed as RFLP-BstEII C5 by RFLP analysis. PFGE grouped a subset (n=8) of M. paratuberculosis isolates into 4 different PFGE types. Satellite typing resulted in 4 different satellite types (A, B, C, D). SSCP analysis identified 2 regions (IS900-2 and HSP70) where sequence polymorphisms could be targeted to display differences among M. paratuberculosis isolates.
      Degree
      Master of Science (M.Sc.)
      Department
      Veterinary Microbiology
      Program
      Veterinary Microbiology
      Committee
      Woodbury, Murray R.; Polley, Lydden; Deneer, Harry; Chirino-Trejo, Manuel; Appleyard, Greg D.
      Copyright Date
      January 2005
      URI
      http://hdl.handle.net/10388/etd-03292005-000922
      Subject
      Microsatellites
      Johnes Disease
      Molecular
      PCR
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      The University of Saskatchewan's main campus is situated on Treaty 6 Territory and the Homeland of the Métis.

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy