University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Adaptive multilevel quadrature amplitude radio implementation in programmable logic

      Thumbnail
      View/Open
      MQAM_Thesis.pdf (1.171Mb)
      Date
      2004-04-22
      Author
      Aspel, Daniel T
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Emerging broadband wireless packet data networks are increasingly employing spectrally efficient modulation methods like Quadrature Amplitude Modulation (QAM) to increase the channel efficiency and maximize data throughput. Unfortunately, the performance of high level QAM modulations in the wireless channel is sensitive to channel imperfections and throughput is degraded significantly at low signal-to-noise ratios due to bit errors and packet retransmission. To obtain a more “robust” physical layer, broadband systems are employing multilevel QAM (M-QAM) to mitigate this reduction in throughput by adapting the QAM modulation level to maintain acceptable packet error rate (PER) performance in changing channel conditions. This thesis presents an adaptive M-QAM modem hardware architecture, suitable for use as a modem core for programmable software defined radios (SDRs) and broadband wireless applications. The modem operates in “burst” mode, and can reliably synchronize to different QAM constellations “burst-by-burst”. Two main improvements exploit commonality in the M-QAM constellations to minimize the redundant hardware required. First, the burst synchronization functions (carrier, clock, amplitude, and modulation level) operate reliably without prior knowledge of the QAM modulation level used in the burst. Second, a unique bit stuffing and shifting technique is employed which supports variable bit rate operation, while reducing the core signal processing functions to common hardware for all constellations. These features make this architecture especially attractive for implementation with Field Programmable Gate Arrays (FPGAs) and Application-Specific Integrated Circuits (ASICs); both of which are becoming popular for highly integrated, cost-effective wireless transceivers.
      Degree
      Master of Science (M.Sc.)
      Department
      Electrical Engineering
      Program
      Electrical Engineering
      Supervisor
      Klymyshyn, David M.
      Committee
      Saadat Mehr, Aryan; Kusalik, Anthony J. (Tony); Dodds, David E.; Chowdhury, Nurul A.
      Copyright Date
      April 2004
      URI
      http://hdl.handle.net/10388/etd-04292004-091055
      Subject
      Adaptive
      M-QAM
      QAM
      FPGA
      Programmable Logic
      Modem
      Radio
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      The University of Saskatchewan's main campus is situated on Treaty 6 Territory and the Homeland of the Métis.

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy