Show simple item record

dc.contributor.advisorSzyszkowski, Walerianen_US
dc.creatorBaweja, Manishen_US
dc.date.accessioned2004-04-30T08:04:03Zen_US
dc.date.accessioned2013-01-04T04:30:10Z
dc.date.available2005-04-30T08:00:00Zen_US
dc.date.available2013-01-04T04:30:10Z
dc.date.created2004-04en_US
dc.date.issued2004-04-27en_US
dc.date.submittedApril 2004en_US
dc.identifier.urihttp://hdl.handle.net/10388/etd-04302004-080403en_US
dc.description.abstractThe Finite Element Method (FEM) based computational mechanics is applied to simulate the optimal attenuation of vibrations in actively controlled structures. The simulation results provide the forces to be generated by actuators, as well as the structures response. Vibrations can be attenuated by applying either open loop or closed loop control strategies. In open loop control, the control forces for a given initial (or disturbed) configuration of the structure are determined in terms of time, and can be preprogrammed in advance. On the other hand, the control forces in closed loop control depend only on the current state of the system, which should be continuously monitored. Optimal attenuation is obtained by solving the optimality equations for the problem derived from the Pontryagin’s principle. These equations together with the initial and final boundary conditions constitute the two-point-boundary-value (TPBV) problem. Here the optimal solutions are obtained by applying an analogy (referred to as the beam analogy) between the optimality equation and the equation for a certain problem of static beams in bending. The problem of analogous beams is solved by the standard FEM in the spatial domain, and then the results are converted into the solution of the optimal vibration control problem in the time domain. The concept of the independent-modal-space-control (IMSC) is adopted, in which the number of independent actuators control the same number of vibrations modes. The steps of the analogy are programmed into an algorithm referred to as the Beam Analogy Algorithm (BAA). As an illustration of the approach, the BAA is used to simulate the open loop vibration control of a structure with several sets of actuators. Some details, such as an efficient meshing of the analogous beams and effective solving of the target condition are discussed. Next, the BAA is modified to handle closed loop vibration control problems. The algorithm determines the optimal feedback gain matrix, which is then used to calculate the actuator forces required at any current state of the system. The method’s accuracy is also analyzed.en_US
dc.language.isoen_USen_US
dc.subjectfeedback gainen_US
dc.subjectOptimal gainsen_US
dc.subjectModal spaceen_US
dc.subjectOpen loop controlen_US
dc.subjectFinite Elementsen_US
dc.subjectActuatorsen_US
dc.subjectOptimal vibration controlen_US
dc.subjectComputational mechanicsen_US
dc.subjectSimulationen_US
dc.subjectBeam Analogyen_US
dc.subjectobservabilityen_US
dc.subjectSensorsen_US
dc.subjectControllabilityen_US
dc.titleThe finite element method simulation of active optimal vibration attenuation in structuresen_US
thesis.degree.departmentMechanical Engineeringen_US
thesis.degree.disciplineMechanical Engineeringen_US
thesis.degree.grantorUniversity of Saskatchewanen_US
thesis.degree.levelMastersen_US
thesis.degree.nameMaster of Science (M.Sc.)en_US
dc.type.materialtexten_US
dc.type.genreThesisen_US
dc.contributor.committeeMemberWatson, L. Glenen_US
dc.contributor.committeeMemberOguocha, Ikechukwuka N.en_US
dc.contributor.committeeMemberBurton, Richard T.en_US
dc.contributor.committeeMemberBoulfiza, Mohameden_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record