University of SaskatchewanHARVEST
  • Login
  • Submit Your Research
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Acute and chronic adaptation of Supraoptic neurons to changes in osmolality

      Thumbnail
      View/Open
      THESIS.pdf (892.8Kb)
      Date
      2011-05-20
      Author
      Mumtaz, Naima
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Vasopressin (VP) is an antidiuretic hormone that is synthesized and released by osmosensitive magnocellular neurosecretory cells (MNCs) to regulate water homeostasis in the body. The rate and firing pattern of MNCs determines the amount of VP release, which is elevated during physiological stress particularly dehydration. During acute osmotic changes the MNCs shrink and swell due to hypertonic and hypotonic stimuli, respectively. In contrast to hippocampal neurons, which display regulatory volume increases (RVI) and regulatory volume decreases (RVD) in response to hypertonic and hypotonic stimuli, MNCs do not have compensatory mechanisms. The MNCs undergo hypertrophy as a part of their physiological structural and functional plasticity during chronic dehydration. These changes are thought to be important during long term osmotic changes for the sustained and high level releases of hormone. However, the mechanism of hypertrophy is still unclear and it is difficult to address this issue in vivo. We therefore undertook studies on acutely isolated MNCs to test hypertrophy in MNCs. We observed that acutely isolated MNCs treated with hyperosmolar solution (325 mOsmol kg-1) for 150 minutes in vitro showed hypertrophy (a 9% increase in CSA) and recovered their original size when returned to isotonic solution (295 mOsmol kg-1) for another 60 minutes. Whole cell patch clamp experiments showed a 34% increase in cell membrane capacitance following treatment with hypertonic solution for 90-150 minutes. The osmotically-evoked hypertrophic response was blocked by using a TAT (human immunodeficiency virus transactivator of transcription) peptide (TAT-NSF700) that prevents SNARE-mediated exocytotic fusion by blocking the function of NSF (N-ethylmaleimide-sensitive factor). The hypertrophic response did not appear to be altered by a scrambled version of the peptide, showing that osmotically-evoked hypertrophy depends on SNARE-mediated exocytotic fusion. The VP and OT-MNCs exposed to hyperosmolar solution for two hours showed increased immunofluorescence for L-type Ca²+ channels (both Cav1.2 and Cav1.3). Our data suggest that the osmotically-evoked hypertrophy is associated with an increase in the total membrane surface area due to the exocytotic fusion of intracellular granules with the plasma membrane and with increased expression of L-type Ca2+ channels. This study will be helpful in understanding of the adaptation that MNCs undergo during long term dehydration and pathological conditions that lead to increased plasma osmolality.
      Degree
      Master of Science (M.Sc.)
      Department
      Physiology
      Program
      Physiology
      Supervisor
      Fisher, Thomas E.
      Committee
      Mulligan, Sean; Desautels, Michel; West, Nigel; Muir, Gillian
      Copyright Date
      May 2011
      URI
      http://hdl.handle.net/10388/etd-05262011-102523
      Subject
      adaptation
      Magnocellular neurosecretory cells
      Osmolality
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy