University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Real-time processing of physiological signals for feedback control

      Thumbnail
      View/Open
      J_BUTALA_FINAL_JUNE_1.pdf (10.63Mb)
      Date
      2009
      Author
      Butala, Jaydrath
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Extensive studies about neural mechanisms involved in insect flight control have been carried out. Adaptive control of locomotion requires integration of salient sensory cues with ongoing motor activity. During flight, inputs received by an organism through sensory organs are processed by the central nervous system (CNS) and the integrated output thus obtained plays a significant role in controlling the wing phase shifts and flight muscle depressor asymmetries associated with adaptive flight maneuvers. The resulting maneuvers, in turn, bring a change in the insect’s sensory environment, thereby closing the feedback loop. Research on insect flight has been carried out using immobile preparations (tethered) and mobile preparations (free flight – untethered). There are pros and cons associated with the tethered and the untethered approach. The tethered approach, however, provides an easier way to study the CNS and its role in motor control of flight. Insects such as locusts and moths exhibit pertinent wing phase shifts and asymmetries in depressor muscles. For locusts constant wing phase shifts and m97 (forewing first basalar depressor muscle) depressor asymmetries have been observed during adaptive flight maneuvers making this a useful system for creation of behaviorally appropriate visual feedback. A method that utilizes asymmetrical timing of bilateral depressor muscles, the forewing first basalars (m97), of the locust to close a visual feedback loop in a computer-generated flight simulator is presented here. The method converts the time difference between left and right m97s to analog voltage values. Analog voltage values can be acquired using an open-loop experimental protocol (visual motion controlled by the experimenter), or can be used to control closed-loop experiments (muscle activity controls the visual stimuli) experiments. We recorded electromyographic (EMG) activity from right and left m97 muscles. On testing this circuit with real animals, we were able to detect the spike time difference and convert it to voltage values. These voltage values were utilized to control the presentation of a stimulus in a closed-loop environment. The feedback circuit presented here may be used in conjunction with the flight simulator(s) to understand the neural mechanisms involved in control of insect flight and provide further understanding of general mechanisms of neural control of behaviour.
      Degree
      Master of Science (M.Sc.)
      Department
      Biomedical Engineering
      Program
      Biomedical Engineering
      Supervisor
      Gander, Robert; Gray, Jack
      Committee
      Farthing, Jonathan; Chapman, L. Dean; Bolton, Ronald J.
      Copyright Date
      2009
      URI
      http://hdl.handle.net/10388/etd-06042009-175730
      Subject
      Feeback Control
      Signal Processing
      Electromyogram
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy