Show simple item record

dc.contributor.advisorPatrick, George W.en_US
dc.creatorCuell, Charles Leeen_US
dc.date.accessioned2007-06-06T15:05:06Zen_US
dc.date.accessioned2013-01-04T04:36:21Z
dc.date.available2007-06-08T08:00:00Zen_US
dc.date.available2013-01-04T04:36:21Z
dc.date.created2007-06en_US
dc.date.issued2007-06-08en_US
dc.date.submittedJune 2007en_US
dc.identifier.urihttp://hdl.handle.net/10388/etd-06062007-150506en_US
dc.description.abstractA Lagrange--d'Alembert integrator is a geometric numerical method for finding numerical solutions to the Lagrange--d'Alembert equations for mechanical systems with nonholonomic constraints that are linear in the velocities. The integrator is developed from geometry and principles that are analogues of the continuous theory.Using discrete analogues of the symplectic form and momentum map, the resulting methods are symplectic and momentum preserving whenever the continuous system is symplectic and momentum preserving. In addition, it is possible to, in principle, generate Lagrange--d'Alembert integrators of any method order.en_US
dc.language.isoen_USen_US
dc.subjectGeometric mechanicsen_US
dc.subjectintegratorsen_US
dc.subjectsymplecticen_US
dc.subjectnonholonomicen_US
dc.subjectholonomicen_US
dc.titleLagrange-d'alembert integratorsen_US
thesis.degree.departmentMathematics and Statisticsen_US
thesis.degree.disciplineMathematics and Statisticsen_US
thesis.degree.grantorUniversity of Saskatchewanen_US
thesis.degree.levelDoctoralen_US
thesis.degree.nameDoctor of Philosophy (Ph.D.)en_US
dc.type.materialtexten_US
dc.type.genreThesisen_US
dc.contributor.committeeMemberSzyszkowski, Walerianen_US
dc.contributor.committeeMemberSzmigielski, Jaceken_US
dc.contributor.committeeMemberSrinivasan, Rajen_US
dc.contributor.committeeMemberCushman, Richarden_US
dc.contributor.committeeMemberBrooke, Jamesen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record