University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Synbiot production and encapsulation

      Thumbnail
      View/Open
      WoodThesis.pdf (7.695Mb)
      Date
      2010-05-16
      Author
      Wood, Kimberly Anne
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      The use of probiotics and prebiotics has become a popular trend in the food industry. The main goal of this study was to produce a synbiot by encapsulating a probiotic and a prebiotic within a matrix that would provide sufficient protection to the probiotic against simulated gastric juice (SGJ). The ability of the probiotic, Bifidbacterium adolescentis, to grow on short chain fructooligosaccharides (FOS; DP 2-8, P95), inulin (DP 2-60, ST), and FOS/inulin mixture (DP 2-60, Syn), as well as glucose and a glucose-free maltooligosaccharide (MOS), were evaluated. Bifidobacterium adolescentis had a significantly higher specific growth rate on P95 (0.47 h-1), than glucose (0.40 h-1). Examination of the growth medium containing P95 and MOS by high performance anion exchange with pulsed amperometric detection (HPAE-PAD) revealed that B. adolescentis utilised the oligosaccharides to the same extent as the monosaccharides. Bifidobacterium adolescentis was successfully encapsulated with and without P95 using extrusion and emulsion methods, at cell concentrations of 8-9 log colony forming units (CFU) mL-1. Capsules formed by the extrusion method with 1.0% alginate (AL), 4.0% pea protein isolate (PPI) + 0.5% AL, and 4.0% whey protein isolate (WPI) + 0.5% AL ranged in geometric mean diameter from 2.0 to 2.2 mm. Capsules formed by emulsion with 4.0% WPI + 0.5% AL had geometric mean diameter of 53 ìm. Extrusionbased encapsulated probiotics in either PPI + AL or WPI + AL showed improved survival in SGJ at pH 2.0 for 2.0 h with log CFU mL-1 reductions of 3.6 and 1.1, respectively. Free cells, AL extrusion-based and WPI + AL emulsion-based encapsulated probiotics showed no survival after 30 min in SGJ at pH 2.0. The addition of 1.0% (w/w) P95 to the PPI + AL capsules improved probiotic survival such that 1.0 log CFU mL-1 reduction was observed. The amount of P95 encapsulated ranged from 4.0 to 4.4 mg per gram of capsules. The external surface of the PPI + AL capsules as examined by cold stage scanning electron microscopy (cryo-SEM) and atomic force microscopy (AFM) was smooth with the presence of pores ranging in diameter from 0.25 to 1.00 ìm. The addition of P95 to the capsules had no significant effect on surface roughness as measured by AFM, but significantly increased the external capsule thickness. The internal structure of the PPI + AL capsules examined by cryo-SEM revealed a porous honeycomb-like structure, with inner pore diameters ranging between 13.0 and 21.9 ìm. Probiotic cells were found to be randomly dispersed on the surface and in the interior of the honeycomb pores. In contrast, the prebiotic was found to be distributed throughout the capsule as observed by confocal laser scanning microscopy (CLSM), indicating that it would be readily available to the probiotic as a carbon source
      Degree
      Master of Science (M.Sc.)
      Department
      Applied Microbiology and Food Science
      Program
      Applied Microbiology and Food Science
      Supervisor
      Nickerson, Michael; Low, Nicholas H.
      Committee
      Korber, Darren R.; Tanaka, Takuji; Van Kessel, Andrew; Green, Rick
      Copyright Date
      May 2010
      URI
      http://hdl.handle.net/10388/etd-06102010-091143
      Subject
      capsule morphology
      probiotic
      prebiotics
      survival
      encapsulation
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy