University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      A novel approach to emergency management of wireless telecommunication system

      Thumbnail
      View/Open
      YH_thesis.pdf (3.167Mb)
      Date
      2008
      Author
      He, Yong
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      The survivability concerns the service continuity when the components of a system are damaged. This concept is especially useful in the emergency management of the system, as often emergencies involve accidents or incident disasters which more or less damage the system. The overall objective of this thesis study is to develop a quantitative management approach to the emergency management of a wireless cellular telecommunication system in light of its service continuity in emergency situations – namely the survivability of the system. A particular wireless cellular telecommunication system, WCDMA, is taken as an example to ground this research.The thesis proposes an ontology-based paradigm for service management such that the management system contains three models: (1) the work domain model, (2) the dynamic model, and (3) the reconfiguration model. A powerful work domain modeling tool called Function-Behavior-Structure (FBS) is employed for developing the work domain model of the WCDMA system. Petri-Net theory, as well as its formalization, is applied to develop the dynamic model of the WCDMA system. A concept in engineering design called the general and specific function concept is applied to develop a new approach to system reconfiguration for the high survivability of the system. These models are implemented along with a user-interface which can be used by emergency management personnel. A demonstration of the effectiveness of this study approach is included.There are a couple of contributions with this thesis study. First, the proposed approach can be added to contemporary telecommunication management systems. Second, the Petri Net model of the WCDMA system is more comprehensive than any dynamic model of the telecommunication systems in literature. Furthermore, this model can be extended to any other telecommunication system. Third, the proposed system reconfiguration approach, based on the general and specific function concept, offers a unique way for the survivability of any service provider system.In conclusion, the ontology-based paradigm for a service system management provides a total solution to service continuity as well as its emergency management. This paradigm makes the complex mathematical modeling of the system transparent to the manager or managerial personnel and provides a feasible scenario of the human-in-the-loop management.
      Degree
      Master of Science (M.Sc.)
      Department
      Mechanical Engineering
      Program
      Mechanical Engineering
      Supervisor
      Zhang, W. J. (Chris)
      Committee
      Deters, Ralph; Chen, X. B. (Daniel); Burton, Richard T.
      Copyright Date
      2008
      URI
      http://hdl.handle.net/10388/etd-06112008-114820
      Subject
      Telecommunication system
      FBS
      Reconfiguration
      Emergency Management
      Petri Net
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy