University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Dissipation and phytotoxicity of oil sands naphthenic acids in wetland plants

      Thumbnail
      View/Open
      ArmstrongPhDThesis2008.pdf (8.480Mb)
      Date
      2008
      Author
      Armstrong, Sarah Anne
      Type
      Thesis
      Degree Level
      Doctoral
      Metadata
      Show full item record
      Abstract
      Naphthenic acids (NAs) are toxic organic acid compounds released during the caustic hot-water extraction of crude oil from oil sands in north-eastern Alberta, Canada. NAs subsequently accumulate in the large volume of oil sands process water (OSPW) produced daily by oil sands operations. The complexity of dealing with a mixture of over 200 individual NA compounds, combined with their acute aquatic toxicity and large volume of production has made them an emerging pollutant of concern for western Canada. The following thesis outlines a variety of experiments designed to determine the potential to use wetland plants to enhance the dissipation of NAs from OSPW (phytoremediation). Investigations were carried out with three native emergent macrophyte species cattail (Typha latifolia), common reed (Phragmites australis subsp. americanus), and hard-stem bulrush (Scirpus acutus) to see if they enhanced the dissipation of NAs from a hydroponic system. Dissipation of NAs (at 30 mg L-1 and 60 mg L-1) was investigated with both a commercially available NA mixture as well as with a NA mixture extracted from the OSPW. Dissipation of NAs was also investigated under the different ionized forms of NAs (ionized, pH = 7.8; and non-ionized, pH = 5.0) to better elucidate the mechanisms of NA uptake and toxicity in plants. Phytotoxicity of NAs was investigated in hydroponic experiments through fresh weight gain and evapotranspiration was monitored throughout the experiment by water uptake. Commercially available NA mixture was more phytotoxic than oil sands NAs mixture. As well, NAs were found to be more phytotoxic in their non-ionized form therefore indicating that they may be taken up through an 'ion-trap' mechanism. However despite this, no significant dissipation of total NAs was observed from planted hydroponic systems. Nevertheless there was a significant change in the distribution (percent abundance) of individual NA families of certain size. These changes were related to the one- and two-ring NA compounds (Z = -2 and Z = -4). Despite not detecting any dissipation of total NAs from the systems, plants were able to reduce the toxicity of a NA system over 30 days by 45% as determined by Daphnia magna acute toxicity bioassays; a 11% greater reduction than unplanted systems. Studies were also conducted investigating the microbial community inhabiting cattail roots exposed to NAs. It was observed that the rhizosphere community changed with NA exposure, with a general increase in potentially pathogenic bacteria and a decrease in bacteria previously found to be beneficial to plant growth. The observed microbial community change could be an indirect effect of the Phytotoxicity experienced by aquatic macrophytes exposed to NAs. Synchrotron-sourced, fourier transform microspectroscopy analysis of root cross sections revealed that there were significant physiological changes to those roots exposed to NAs. These changes were identified as being cell death in the plant root epidermis as well as a change in the chemistry of parenchyma cells in the root pith. It is not known if these changes are a direct effect of NAs to the plant or due to changes of the associated rhizosphere community in the roots or some combination of both these factors.
      Degree
      Doctor of Philosophy (Ph.D.)
      Department
      Toxicology
      Program
      Toxicology
      Supervisor
      Headley, John V.; Germida, James J.
      Committee
      McMartin, Dena; Dubé, Monique; Blakley, Barry R.; Meda, Venkatesh; Peterson, Hans
      Copyright Date
      2008
      URI
      http://hdl.handle.net/10388/etd-07082008-115622
      Subject
      naphthenic acid mixtures
      naphthenic acid chemical form
      plant biotransformation
      rhizosphere bacteria
      dried tailings runoff water
      pressurized liquid extraction
      FTIR microspectroscopy
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy