Show simple item record

dc.contributor.advisorRoesler, William J.en_US
dc.contributor.advisorHill, Gordon A.en_US
dc.creatorLiao, Boen_US
dc.date.accessioned2008-07-14T15:43:59Zen_US
dc.date.accessioned2013-01-04T04:44:47Z
dc.date.available2009-07-15T08:00:00Zen_US
dc.date.available2013-01-04T04:44:47Z
dc.date.created2008en_US
dc.date.issued2008en_US
dc.date.submitted2008en_US
dc.identifier.urihttp://hdl.handle.net/10388/etd-07142008-154359en_US
dc.description.abstractEthanol can be used as a complete fuel or as an octane enhancer, and has the advantages of being renewable and environmentally friendly. Ethanol produced by a fermentation process, generally referred to as bioethanol, is considered to be a partial solution to the worldwide energy crisis. Traditionally, industrial bioethanol fermentation involves two major steps: starch hydrolysis and fermentation. Since the key microorganism, Saccharomyces cerevisiae, lacks amylolytic activity and is unable to directly utilize starch for proliferation and fermentation, it requires intensive amount of energy and pure starch hydrolyzing enzymes to gelatinize, liquefy and dextrinize the raw starch before fermentation. It has been suggested that genetically engineered yeast which expresses amylolytic enzymes could potentially perform simultaneous starch hydrolysis and fermentation. This improvement could greatly reduce the capital and energy costs in current bioethanol producing plants and make bioethanol production more economical. In this project, a novel yeast strain of Saccharomyces cerevisiae was genetically engineered in such a way that barley alpha-amylase was constitutively expressed and immobilized on the yeast cell surface. This particular alpha-amylase was selected based on its superior kinetic properties and its pH optimum which is compatible with the pH of yeast culture media. The cDNA encoding barley Ą-amylase, with a secretion signal sequence, was fused to the cDNA encoding the C-terminal half of a cell wall anchoring protein, alpha-agglutinin. The fusion gene was cloned downstream of a constitutive promoter ADH1 in a yeast episomal plasmid pAMY. The pAMY harbouring yeast showed detectable amylolytic activity in a starch plate assay. In addition, alpha-amylase activity was detected only in the cell pellet fraction and not in the culture supernatant. In batch fermentation studies using soluble wheat starch as sole carbon source, even though pAMY harbouring yeast was able to hydrolyse soluble starch under fermentation conditions, no ethanol was produced. This was probably due to insufficient alpha-amylase activity which resulted from the enzyme being anchored on the cell wall by alpha-agglutinin. Further research using alternative cell surface anchoring system might be able to produce yeast with industrial applications.en_US
dc.language.isoen_USen_US
dc.subjectDNA Recombinationen_US
dc.subjectBioethanolen_US
dc.subjectStarchen_US
dc.subjectFermentationen_US
dc.titleUse of genetically modified saccharomyces cerevisiae to convert soluble starch directly to bioethanolen_US
thesis.degree.departmentBiochemistryen_US
thesis.degree.disciplineBiochemistryen_US
thesis.degree.grantorUniversity of Saskatchewanen_US
thesis.degree.levelMastersen_US
thesis.degree.nameMaster of Science (M.Sc.)en_US
dc.type.materialtexten_US
dc.type.genreThesisen_US
dc.contributor.committeeMemberKhandelwal, Ramji L.en_US
dc.contributor.committeeMemberGray, Gordon R.en_US
dc.contributor.committeeMemberBonham-Smith, Peta C.en_US
dc.contributor.committeeMemberWarrington, Rob C.en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record