University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils in a roller baffled bioreactor

      Thumbnail
      View/Open
      Thesis.pdf (1.175Mb)
      Date
      2006-06-28
      Author
      Yu, Ruihong
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Contamination of soil with Polycyclic Aromatic Hydrocarbons (PAHs) is a serious environmental issue because some PAHs are toxic, carcinogenic and mutagenic. Bioremediation is a promising option to completely remove PAHs from the environment or convert them to less harmful compounds. One of the main challenges in bioremediation of PAHs in a conventional roller bioreactor is the limitation on mass transfer due to the strong hydrophobicity and low water solubility of these compounds. To address this challenge, a novel bead mill bioreactor (BMB) was developed by Riess et al. (2005) which demonstrated a significant improvement in the rates of mass transfer and biodegradation of PAHs. In this study, to further improve mass transfer rates, baffles have been installed in both the conventional and bead mill bioreactors. Mass transfer rates of 1000 mg L-1 suspended naphthalene, 2-methylnaphthalene and 1,5-dimethylnaphthalene, three model compounds of PAHs, have been investigated in four bioreactors: conventional (control), baffled, BMB and baffled bead mill bioreactors. The baffled bioreactor provided mass transfer coefficients (KLa) that were up to 7 times higher than those of the control bioreactor. Bioremediation of suspended naphthalene or 2-methylnaphthalene as a single substrate and their mixtures was studied using the bacterium Pseudomonas putida ATCC 17484. Both baffled and bead mill bioreactors provided maximum bioremediation rates that were 2 times higher than the control bioreactor. The maximum bioremediation rates of 2-methylnaphthalene were further increased in the presence of naphthalene by a factor of 1.5 to 2 compared to the single substrate. Another rate-limiting step for bioremediation of PAH-contaminated soil is the strong sorption between the contaminant and soil. To find out the effect of sorption on the bioavailability of naphthalene, the appropriate sorption isotherms for three types of soils (sand, silt and clay) have been determined. It was observed that the sorption capacity of soils for naphthalene was proportional to the organic carbon content of the soils. The mass transfer of soil-bound naphthalene from the artificially prepared contaminated soils with short contamination history to the aqueous phase was studied in both the control and bead mill bioreactors. It was observed that the mass transfer was unexpectedly fast due to the increased interfacial surface area of naphthalene particles and the weak sorption between naphthalene and soils. It was concluded that artificially, naphthalene contaminated soils would likely not be any more difficult to bioremediate than pure naphthalene particles.
      Degree
      Master of Science (M.Sc.)
      Department
      Chemical Engineering
      Program
      Chemical Engineering
      Supervisor
      Hill, Gordon A.
      Copyright Date
      June 2006
      URI
      http://hdl.handle.net/10388/etd-07182006-114607
      Subject
      soils
      cometabolism
      sorption
      bioremediation
      polycyclic aromatic hydrocarbon
      roller baffled bioreactor
      mass transfer
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      The University of Saskatchewan's main campus is situated on Treaty 6 Territory and the Homeland of the Métis.

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy