University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      The measurement of 140 kvp spectra

      Thumbnail
      View/Open
      Burke_Dennis_G_1958_sec.pdf (15.24Mb)
      Date
      1958-07
      Author
      Burke, Dennis G.
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      In order to calculate the amount of energy absorbed in a material which is being irradiated, it is necessary to know the spectral distribution of the radiation. Hence it is desirable to have a knowledge of the spectra of x-rays coming from commercial machines. A radiation chemist, for instance, who irradiates a small sample in a beam of x-rays with a large field area, is interested in the spectral distribution of the primary radiation from the target. On the other hand, when the object being irradiated is large in area compared to the field area of the x-ray beam, as in cancer therapy, the scattered radiation within the medium must also be considered. In such a case it is also interesting to know the rate of energy absorption at various depths below the surface, and so the effect of depth on the spectral distribution is also desired. Of the various types of spectrometers that can be used in this energy range, a total absorption scintillation spectrometer was chosen. Such a system has an advantage over a crystal spectrometer or a Compton spectrometer in that the measured spectra are not altered as much by the necessary corrections. Another advantage, especially when measuring scattered spectra, is that much better counting efficiencies can be obtained. Also, since the detector consists only of a scintillator crystal with photomultiplier and impedance matching circuit and can be located remotely from the counting circuitry, a small and easily manoeuvred spectrometer can be constructed. Using such an apparatus, Cormack et al (1) have measured primary and scattered radiation from an x-ray machine operated at 400 kvp. Similar measurements were later made with 280 kvp radiation (2). This discussion covers work done using a Picker Vanguard x-ray machine operated at 140 kvp. It was found that since the lower end of the energy region used by previous workers was particularly important for this radiation, some refinements were required in the correction and calibration procedures. Also, effects such as background and attenuation which are more important at low energies, had to be treated more carefully.
      Degree
      Master of Science (M.Sc.)
      Department
      Physics
      Program
      Physics
      Supervisor
      Cormack, D.V.
      Copyright Date
      July 1958
      URI
      http://hdl.handle.net/10388/etd-07242012-141456
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy